HUBBLE
SPACE TELESCOPE - Continuing to collect World Class Science
DAILY
REPORT #4918
PERIOD
COVERED: 5am August 26 - 5am August 27, 2009 (DOY 238/09:00z-239/09:00z)
OBSERVATIONS
SCHEDULED
ACS/WFC3
11465
ACS
CCD Monitoring and Calibration for WFC3
This
program is a smaller version of our routine CCD monitoring program,
designed
to run throughout SMOV, after which our regular Cycle 17 CAL
proposal
will begin. This program obtains the bias and dark frames
needed
to generate reference files for calibrating science data, and
allows
us to monitor detector noise and the growth of hot pixels.
FGS
11788
The
Architecture of Exoplanetary Systems
Are
all planetary systems coplanar? Concordance cosmogony makes that
prediction.
It is, however, a prediction of extrasolar planetary system
architecture
as yet untested by direct observation for main sequence
stars
other than the Sun. To provide such a test, we propose to carry
out
FGS astrometric studies on four stars hosting seven companions. Our
understanding
of the planet formation process will grow as we match not
only
system architecture, but formed planet mass and true distance from
the
primary with host star characteristics for a wide variety of host
stars
and exoplanet masses.
We
propose that a series of FGS astrometric observations with
demonstrated
1 millisecond of arc per-observation precision can
establish
the degree of coplanarity and component true masses for four
extrasolar
systems: HD 202206 (brown dwarf+planet); HD 128311
(planet+planet),
HD 160691 = mu Arae (planet+planet), and HD 222404AB =
gamma
Cephei (planet+star). In each case the companion is identified as
such
by assuming that the minimum mass is the actual mass. For the last
target,
a known stellar binary system, the companion orbit is stable
only
if coplanar with the AB binary orbit.
NIC2/WFC3/IR
11548
NICMOS
Imaging of Protostars in the Orion A Cloud: The Role of
Environment
in Star Formation
We
propose NICMOS observations of a sample of 252 protostars identified
in
the Orion A cloud with the Spitzer Space Telescope. These
observations
will image the scattered light escaping the protostellar
envelopes,
providing information on the shapes of outflow cavities, the
inclinations
of the protostars, and the overall morphologies of the
envelopes.
In addition, we ask for Spitzer time to obtain 55-95 micron
spectra
of 75 of the protostars. Combining these new data with existing
3.6
to 70 micron photometry and forthcoming 5-40 micron spectra measured
with
the Spitzer Space Telescope, we will determine the physical
properties
of the protostars such as envelope density, luminosity,
infall
rate, and outflow cavity opening angle. By examining how these
properties
vary with stellar density (i.e. clusters vs groups vs
isolation)
and the properties of the surrounding molecular cloud; we can
directly
measure how the surrounding environment influences protostellar
evolution,
and consequently, the formation of stars and planetary
systems.
Ultimately, this data will guide the development of a theory of
protostellar
evolution.
STIS/CCD
11844
CCD
Dark Monitor Part 1
Monitor
the darks for the STIS CCD.
STIS/CCD
11846
CCD
Bias Monitor-Part 1
Monitor
the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and
1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution
of hot columns.
STIS20
11402
STIS-20
NUV MAMA Dark Monitor
The
STIS NUV-MAMA dark current is dominated by a phosphorescent glow
from
the detector window. Meta-stable states in this window are
populated
by cosmic ray impacts, which, days later, can be thermally
excited
to an unstable state from which they decay, emitting a UV
photon.
The equilibrium population of these meta-stable states is larger
at
lower temperatures; so warming up the detector from its cold safing
will
lead to a large, but temporary, increase in the dark current.
To
monitor the decay of this glow, and to determine the equilibrium dark
current
for Cycle 17, four 1380s NUV-MAMA ACCUM mode darks should be
taken
each week during the SMOV period. Once the observed dark current
has
reached an approximate equilibrium with the mean detector
temperature,
the frequency of this monitor can be reduced to one pair of
darks
per week.
WFC3/ACS/IR
11563
Galaxies
at z~7-10 in the Reionization Epoch: Luminosity Functions to
<0.2L*
from Deep IR Imaging of the HUDF and HUDF05 Fields
The
first generations of galaxies were assembled around redshifts
z~7-10+,
just 500-800 Myr after recombination, in the heart of the
reionization
of the universe. We know very little about galaxies in this
period.
Despite great effort with HST and other telescopes, less than
~15
galaxies have been reliably detected so far at z>7, contrasting with
the
~1000 galaxies detected to date at z~6, just 200-400 Myr later, near
the
end of the reionization epoch. WFC3 IR can dramatically change this
situation,
enabling derivation of the galaxy luminosity function and its
shape
at z~7-8 to well below L*, measurement of the UV luminosity
density
at z~7-8 and z~8-9, and estimates of the contribution of
galaxies
to reionization at these epochs, as well as characterization of
their
properties (sizes, structure, colors). A quantitative leap in our
understanding
of early galaxies, and the timescales of their buildup,
requires
a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can
achieve
this with 192 WFC3 IR orbits on three disjoint fields
(minimizing
cosmic variance): the HUDF and the two nearby deep fields of
the
HUDF05. Our program uses three WFC3 IR filters, and leverages over
600
orbits of existing ACS data, to identify, with low contamination, a
large
sample of over 100 objects at z~7-8, a very useful sample of ~23
at
z~8-9, and limits at z~10. By careful placement of the WFC3 IR and
parallel
ACS pointings, we also enhance the optical ACS imaging on the
HUDF
and a HUDF05 field. We stress (1) the need to go deep, which is
paramount
to define L*, the shape, and the slope alpha of the luminosity
function
(LF) at these high redshifts; and (2) the far superior
performance
of our strategy, compared with the use of strong lensing
clusters,
in detecting significant samples of faint z~7-8 galaxies to
derive
their luminosity function and UV ionizing flux. Our recent z~7.4
NICMOS
results show that wide-area IR surveys, even of GOODS-like depth,
simply
do not reach faint enough at z~7-9 to meet the LF and UV flux
objectives.
In the spirit of the HDF and the HUDF, we will waive any
proprietary
period, and will also deliver the reduced data to STScI. The
proposed
data will provide a Legacy resource of great value for a wide
range
of archival science investigations of galaxies at redshifts z~2-9.
The
data are likely to remain the deepest IR/optical images until JWST
is
launched, and will provide sources for spectroscopic followup by
JWST,
ALMA and EVLA.
WFC3/ACS/UVIS
11360
Star
Formation in Nearby Galaxies
Star
formation is a fundamental astrophysical process; it controls
phenomena
ranging from the evolution of galaxies and nucleosynthesis to
the
origins of planetary systems and abodes for life. The WFC3,
optimized
at both UV and IR wavelengths and equipped with an extensive
array
of narrow-band filters, brings unique capabilities to this area of
study.
The WFC3 Scientific Oversight Committee (SOC) proposes an
integrated
program on star formation in the nearby universe which will
fully
exploit these new abilities. Our targets range from the
well-resolved
R136 in 30 Dor in the LMC (the nearest super star cluster)
and
M82 (the nearest starbursting galaxy) to about half a dozen other
nearby
galaxies that sample a wide range of star-formation rates and
environments.
Our program consists of broad band multiwavelength imaging
over
the entire range from the UV to the near-IR, aimed at studying the
ages
and metallicities of stellar populations, revealing young stars
that
are still hidden by dust at optical wavelengths, and showing the
integrated
properties of star clusters. Narrow-band imaging of the same
environments
will allow us to measure star-formation rates, gas
pressure,
chemical abundances, extinction, and shock morphologies. The
primary
scientific issues to be addressed are: (1) What triggers star
formation?
(2) How do the properties of star-forming regions vary among
different
types of galaxies and environments of different gas densities
and
compositions? (3) How do these different environments affect the
history
of star formation? (4) Is the stellar initial mass function
universal
or determined by local conditions?
WFC3/UVIS
11432
UVIS
Internal Flats
This
proposal will be used to assess the stability of the flat field
structure
for the UVIS detector. Flat fields will be obtained for all
filters
using the internal D2 and Tungsten lamps.
This
proposal corresponds to Activity Description ID WF19. It should
execute
only after the following proposals have executed: WF08 - 11421
WF09
- 11422 WF11 - 11424 WF15 - 11428
WFC3/UVIS
11905
WFC3
UVIS CCD Daily Monitor
The
behavior of the WFC3 UVIS CCD will be monitored daily with a set of
full-frame,
four-amp bias and dark frames. A smaller set of 2Kx4K
subarray
biases are acquired at less frequent intervals throughout the
cycle
to support subarray science observations. The internals from this
proposal,
along with those from the anneal procedure (11909), will be
used
to generate the necessary superbias and superdark reference files
for
the calibration pipeline (CDBS).
WFC3/UVIS
11908
Cycle
17: UVIS Bowtie Monitor
Ground
testing revealed an intermittent hysteresis type effect in the
UVIS
detector (both CCDs) at the level of ~1%, lasting hours to days.
Initially
found via an unexpected bowtie-shaped feature in flatfield
ratios,
subsequent lab tests on similar e2v devices have since shown
that
it is also present as simply an overall offset across the entire
CCD,
i.e., a QE offset without any discernable pattern. These lab tests
have
further revealed that overexposing the detector to count levels
several
times full well fills the traps and effectively neutralizes the
bowtie.
Each visit in this proposal acquires a set of three 3x3 binned
internal
flatfields: the first unsaturated image will be used to detect
any
bowtie, the second, highly exposed image will neutralize the bowtie
if
it is present, and the final image will allow for verification that
the
bowtie is gone.
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST: (None)
COMPLETED
OPS NOTES: (None)
SCHEDULED
SUCCESSFUL
FGS
GSAcq
7
7
FGS
REAcq
7
7
OBAD
with Maneuver
5
5
SIGNIFICANT
EVENTS: (None)