HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT      #4937

 

PERIOD COVERED: 5am September 23 - 5am September 24, 2009 (DOY 266/09:00z-267/09:00z)

 

OBSERVATIONS SCHEDULED

 

ACS/WFC3 11879

 

CCD Daily Monitor (Part 1)

 

This program comprises basic tests for measuring the read noise and dark

current of the ACS WFC and for tracking the growth of hot pixels. The

recorded frames are used to create bias and dark reference images for

science data reduction and calibration. This program will be executed

four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To

facilitate scheduling, this program is split into three proposals. This

proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January

2010.

 

COS/NUV 11466

 

NUV Detector Dark

 

The purpose of this proposal is to measure the NUV detector dark rate by

taking long science exposures with no light on the detector. The

detector dark rate and spatial distribution of counts will be compared

to pre-launch data in order to verify the nominal operation of the

detector, and for use in the CalCOS calibration pipeline. Variations of

count rate as a function of orbital position will be analyzed to find

dependence of dark rate on proximity to the SAA.

 

COS/NUV 11899

 

NUV Imaging Sensitivity, Cycle 17

 

The purpose of this proposal is to test NUV imaging sensitivity for a

range of target spectral energy distributions. All targets have

wide-slit STIS spectra in the HST Archive. We use eleven horizontal

branch stars in the globular cluster NGC 6681 covering a range of

effective temperatures, plus a solar-analog standard star.

 

COS/NUV 11900

 

NUV Internal/External Wavelength Scale Monitor

 

This program monitors the offsets between the wavelength scale set by

the internal wavecal versus that defined by absorption lines in external

targets. This is accomplished by observing two external radial velocity

standard targets: HD187691 with G225M and G285M and HD6655 with G285M

and G230L. The two standard targets have little flux in the wavelength

range covered by G185M and so Feige 48 (sdO) is observed with this

grating. Both Feige 48 and HD6655 are also observed in SMOV. The

cenwaves observed in this program are a subset of the ones used during

Cycle 17. Observing all cenwaves would require a considerably larger

number of orbits. Constraints on scheduling of each target are placed so

that each target is observed once every ~2-3 months. Observing the three

targets every month would also require a considerably larger number of

orbits.

 

NIC1/NIC2/NIC3 11947

 

Extended Dark Monitoring

 

This program takes a series of darks to obtain darks (including

amplifier glow, dark current, and shading profiles) for all three

cameras in the read-out sequences used in Cycle 17. A set of 12 orbits

will be observed every two months for a total of 72 orbits for a 12

month Cycle 17. This is a continuation of Cycle 16 program 11330 scaled

down by ~80%.

 

The first orbit (Visit A0) should be scheduled in the NICMOS SMOV after

the DC Transfer Test (11406) and at least 36h before the Filter Wheel

Test (11407). Data download using fast track.

 

The following 28 orbits (visit A1-N2) should be scheduled AFTER the SMOV

Proposal 11407 (Filter Wheel Test). This is done in order to monitor the

dark current following an adjustment of the NCS set-point. These visits

should be executed until the final temperature is reached during SMOV.

 

NIC1/NIC2/NIC3 8795

 

NICMOS Post-SAA Calibration - CR Persistence Part 6

 

This is a new procedure proposed to alleviate the CR-persistence problem

of NICMOS. Dark frames will be obtained immediately upon exiting the SAA

contour 23, and every time a NICMOS exposure is scheduled within 50

minutes of coming out of the SAA. The darks will be obtained in parallel

in all three NICMOS cameras. The post-SAA darks will be non-standard

reference files available to users with a 'Use After' date/time mark.

The keyword 'UseAfter=date/time' will also be added to the header of

each post-SAA dark frame. The keyword must be populated with the time,

in addition to the date, because HST crosses the SAA ~8 times per day,

so each post-SAA dark will need to have the appropriate time specified,

for users to identify the ones they need. Both the raw and processed

images will be archived as post-SAA darks. Generally we expect that all

NICMOS science/calibration observations started within 50 minutes of

leaving an SAA will need such MAPs to remove the CR persistence from the

science images. Each observation will need its own CRMAP, as different

SAA passages leave different imprints on the NICMOS detectors.

 

STIS/CCD 11567

 

Boron Abundances in Rapidly Rotating Early-B Stars

 

Models of rotation in early-B stars predict that rotationally driven

mixing should deplete surface boron abundances during the main-sequence

lifetime of many stars. However, recent work has shown that many boron

depleted stars are intrinsically slow rotators for which models predict

no depletion should have occurred, while observations of nitrogen in

some more rapidly rotating stars show less mixing than the models

predict. Boron can provide unique information on the earliest stages of

mixing in B stars, but previous surveys have been biased towards

narrow-lined stars because of the difficulty in measuring boron

abundances in rapidly rotating stars. The two targets observed as part

of our Cycle 13 SNAP program 10175, just before STIS failed, demonstrate

that it is possible to make useful boron abundance measurements for

early-B stars with Vsin(i) above 100 km/s. We propose to extend that

survey to a large enough sample of stars to allow statistically

significant tests of models of rotational mixing in early-B stars.

 

STIS/CCD 11844

 

CCD Dark Monitor Part 1

 

The purpose of this proposal is to monitor the darks for the STIS CCD.

 

STIS/CCD 11846

 

CCD Bias Monitor-Part 1

 

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,

2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up

high-S/N superbiases and track the evolution of hot columns.

 

STIS/CCD/MA1 12010

 

COS FUV Line Spread Function Characterization

 

In this program we will observe the star Sk-155 (an O9b star in the SMC)

with the high resolution E140H grating on STIS. Sk-155 was observed with

COS during SMOV with the purpose of confirming the spectroscopic

resolution of the FUV medium resolution gratings (G130M and G160M).

Comparison of the E140H spectra with the COS spectra shows that the COS

spectral resolution is likely significantly impacted by broad non-

Gaussian wings in the COS LSF. Further tests and characterization of

this effect is critical for evaluating the final spectroscopic

resolution of COS. However, the existing STIS/E140H spectra of Sk-155

only cover the wavelength range 1165-1350 A (good for testing the G130M

spectral resolution). They do not extend to long enough wavelenghts to

test the COS G160M spectral resolution. Therefore, in this supplemental

STIS program we will use 2 HST orbits to re-observe Sk 155 with STIS. We

will utilize the E140H grating with the 0.2x0.09 aperture and central

wavelength of 1598 angstroms which covers the missing wavelength range

1500-1700 angstroms.

 

WFC3/ACS/IR 11359

 

Panchromatic WFC3 Survey of Galaxies at Intermediate z: Early Release

Science Program for Wide Field Camera 3

 

The unique panchromatic capabilities of WFC3 will be used to survey the

structure and evolution of galaxies at the peak of the galaxy assembly

epoch. Deep ultraviolet and near-IR imaging and slitless spectroscopy of

existing deep multi-color ACS fields will be used to gauge

star-formation and the growth of stellar mass as a function of

morphology, structure and surrounding density in the critical epoch 1 <

z < 4. Images in the F225W, F275W, and F336W filters will identify

galaxies at z < 1.5 from their UV continuum breaks, and provide

star-formation indicators tied directly to both local and z > 3

populations. Deep near-IR (F125W and F160W) images will probe the

stellar mass function well below 10^9 Msun for mass-complete samples.

Lastly, the WFC3 slitless UV and near-IR grisms will be used to measure

redshifts and star-formation rates from H- alpha and rest-frame UV

continuum slope. This WFC3 ERS program will survey one 4 x 2 mosaic for

a total area of 50 square arcminutes to 5-sigma depths of m_AB = 27 in

most filters from the mid-UV through the near-IR.

 

This multicolor high spatial resolution data set will allow the user to

gauge the growth of galaxies through star-formation and merging. High

precision photometric and low- resolution spectroscopic redshifts will

allow accurate determinations of the faint-end of the luminosity and

mass functions, and will shed light on merging and tidal disruption of

stellar and gaseous disks. The WFC3 images will also allow detailed

studies of the internal structure of galaxies, and the distribution of

young and old stellar populations. This program will demonstrate the

unique power of WFC3 by applying its many diverse modes and full

panchromatic capability to a forefront problem in astrophysics.

 

WFC3/ACS/IR 11600

 

Star Formation, Extinction, and Metallicity at 0.7<z<1.5: H-Alpha Fluxes

and Sizes from a Grism Survey of GOODS-N

 

The global star formation rate (SFR) is ~10x higher at z=1 than today.

This could be due to drastically elevated SFR in some fraction of

galaxies, such as mergers with central bursts, or a higher SFR across

the board. Either means that the conditions in z=1 star forming galaxies

could be quite different from local objects. The next step beyond

measuring the global SFR is to determine the dependence of SFR,

obscuration, metallicity, and size of the star-forming region on galaxy

mass and redshift. However, SFR indicators at z=1 typically apply local

calibrations for UV, [O II] and far-IR, and do not agree with each other

on a galaxy-by-galaxy basis. Extinction, metallicity, and dust

properties cause uncontrolled offsets in SFR calibrations. The great

missing link is Balmer H-alpha, the most sensitive probe of SFR. We

propose a slitless WFC3/G141 IR grism survey of GOODS-N, at 2

orbits/pointing. It will detect Ha+[N II] emission from 0.7<z<1.5, to

L(Ha) = 1.7 x 10^41 erg/sec at z=1, measuring H-alpha fluxes and sizes

for > 600 galaxies, and a small number of higher-redshift emitters. This

will produce: an emission-line redshift survey unbiased by magnitude and

color selection; star formation rates as a function of galaxy

properties, e.g. stellar mass and morphology/mergers measured by ACS;

comparisons of SFRs from H-alpha to UV and far-IR indicators;

calibrations of line ratios of H-alpha to important nebular lines such

as [O II] and H-beta, measuring variations in metallicity and extinction

and their effect on SFR estimates; and the first measurement of scale

lengths of the H-alpha emitting, star-forming region in a large sample

of z~1 sources.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by GOs in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UVIS 11559

 

Jovian Upheaval and Its Impact on Vortices

 

We propose observations of Jupiter with global coverage at high

resolution to quantify changes in its atmosphere during and following

the global upheaval. Only HST has the capability to obtain images with

enough spatial resolution and contrast to extract velocity fields (we

will use our newly developed technique to accomplish this), and with

WFC3 we can image Jupiter in its entirety in a single exposure. We are

in particular interested in the Red Oval BA: Will the Oval be long

lived, remain red, or turn white again, disappear? Both the merger of

its precursors, and change in color has never before been witnessed. The

Great Red Spot: This storm system appears to decrease in size and has

become rounder, both as derived from its associated cloud deck, but also

from its potential vorticity, a more dynamically-relevant quantity. How

will the GRS evolve? Will it swallow the new vortices detected in

amateur images at this same latitude band? How will this effect the

potential vorticity? In addition, we hope to understand disturbances and

stagnation points, both of which were detected during the present global

upheaval: are these cyclonic regions, can they spawn anticyclones (as

suggested by amateur images)?

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS/IR 11644

 

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into

the Formation of the Outer Solar System

 

The eight planets overwhelmingly dominate the solar system by mass, but

their small numbers, coupled with their stochastic pasts, make it

impossible to construct a unique formation history from the dynamical or

compositional characteristics of them alone. In contrast, the huge

numbers of small bodies scattered throughout and even beyond the

planets, while insignificant by mass, provide an almost unlimited number

of probes of the statistical conditions, history, and interactions in

the solar system. To date, attempts to understand the formation and

evolution of the Kuiper Belt have largely been dynamical simulations

where a hypothesized starting condition is evolved under the

gravitational influence of the early giant planets and an attempt is

made to reproduce the current observed populations. With little

compositional information known for the real Kuiper Belt, the test

particles in the simulation are free to have any formation location and

history as long as they end at the correct point. Allowing compositional

information to guide and constrain the formation, thermal, and

collisional histories of these objects would add an entire new dimension

to our understanding of the evolution of the outer solar system. While

ground based compositional studies have hit their flux limits already

with only a few objects sampled, we propose to exploit the new

capabilities of WFC3 to perform the first ever large-scale

dynamical-compositional study of Kuiper Belt Objects (KBOs) and their

progeny to study the chemical, dynamical, and collisional history of the

region of the giant planets. The sensitivity of the WFC3 observations

will allow us to go up to two magnitudes deeper than our ground based

studies, allowing us the capability of optimally selecting a target list

for a large survey rather than simply taking the few objects that can be

measured, as we have had to do to date. We have carefully constructed a

sample of 120 objects which provides both overall breadth, for a general

understanding of these objects, plus a large enough number of objects in

the individual dynamical subclass to allow detailed comparison between

and within these groups. These objects will likely define the core

Kuiper Belt compositional sample for years to come. While we have many

specific results anticipated to come from this survey, as with any

project where the field is rich, our current knowledge level is low, and

a new instrument suddenly appears which can exploit vastly larger

segments of the population, the potential for discovery -- both

anticipated and not -- is extraordinary.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       SCHEDULED      SUCCESSFUL

FGS GSAcq               6                    6             

FGS REAcq               8                    8             

OBAD with Maneuver 6                    6             

 

SIGNIFICANT EVENTS: (None)