HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5015

 

PERIOD COVERED: 5am January 19 - 5am January 20, 2010 (DOY 019/10:00z-

                           020/10:00z)

 

OBSERVATIONS SCHEDULED

 

S/C 12046

 

COS FUV DCE Memory Dump

 

Whenever the FUV detector high voltage is on, count rate and current

draw information is collected, monitored, and saved to DCE memory. Every

10 msec the detector samples the currents from the HV power supplies

(HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are

saved in memory, along with a histogram of the number of occurrences of

each current value.

 

In the case of a HV transient (known as a "crackle" on FUSE), where one

of these currents exceeds a preset threshold for a persistence time, the

HV will shut down, and the DCE memory will be dumped and examined as

part of the recovery procedure. However, if the current exceeds the

threshold for less than the persistence time (a "mini-crackle" in FUSE

parlance), there is no way to know without dumping DCE memory. By

dumping and examining the histograms regularly, we will be able to

monitor any changes in the rate of "mini-crackles" and thus learn

something about the state of the detector.

 

STIS/CCD 11606

 

Dynamical Hypermassive Black Hole Masses

 

We will use STIS spectra to derive the masses of 5 hypermassive black

holes (HMBHs). From the observed scaling relations defined by less

massive spheroids, these objects are expected to reside at the nuclei of

host galaxies with stellar velocity dispersions greater than 320 km/s.

These 5 targets have confirmed regular gas distributions on the scales

of the black hole sphere of influence. It is essential that the sphere

of influence is resolved for accurate determinations of black hole mass

(0.1"). These scales cannot be effectively observed from the ground.

Only two HMBHs have had their masses modeled so far; it is impossible to

draw any general conclusions about the connections between HMBH mass and

their massive host galaxies. With these 5 targets we will determine

whether these HMBHs deviate from the scaling relations defined by less

massive spheroids. A larger sample will allow us to firmly anchor the

high mass end of the correlation between black hole mass and stellar

velocity dispersion, and other scaling relations. Therefore we are also

conducting a SNAPshot program with which we expect to detect a further

24 HMBH candidates for STIS observation in future cycles. At the

completion of this project we will have populated the high mass end of

the scaling relations with the sample sizes enjoyed by less massive

spheroids.

 

STIS/CCD 11844

 

CCD Dark Monitor Part 1

 

The purpose of this proposal is to monitor the darks for the STIS CCD.

 

STIS/CCD 11846

 

CCD Bias Monitor-Part 1

 

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,

2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up

high-S/N superbiases and track the evolution of hot columns.

 

STIS/CCD/MA1 11737

 

The Distance Dependence of the Interstellar N/O Abundance Ratio: A Gould

Belt Influence?

 

The degree of elemental abundance homogeneity in the interstellar medium

is a function of the enrichment and mixing processes that govern

galactic chemical evolution. Observations of young stars and the

interstellar gas within ~500 pc of the Sun have revealed a local ISM

that is so well- mixed it is having an impact on ideas regarding the

formation of extrasolar planets. However, the situation just beyond the

local ISM is not so clear. Sensitive UV absorption line measurements

have recently revealed a pattern of inhomogeneities in the interstellar

O, N, and Kr gas-phase abundances at distances of ~500 pc and beyond

that appear nucleosynthetic in origin rather than due to dust depletion.

In particular, based on a sample of 13 sightlines, Knauth et al. (2006)

have found that the nearby stars (d < 500 pc) exhibit a mean

interstellar N/O abundance ratio that is significantly higher (0.18 dex)

than that toward the more distant stars. Interestingly, all of their

sightlines lie in the sky vicinity of the Gould Belt of OB associations,

molecular clouds, and diffuse gas encircling the Sun at a distance of

~400 pc. Is it possible that mixing processes have not yet smoothed out

the recent ISM enrichment by massive stars in the young Belt region? By

measuring the interstellar N/O ratios in a strategic new sample of

sightlines with STIS, we propose to test the apparent N/O homogeneity

inside the Gould Belt and determine if the apparent decline in the N/O

ratio with distance is robust and associated with the Belt region.

 

STIS/MA1/MA2 11857

 

STIS Cycle 17 MAMA Dark Monitor

 

This proposal monitors the behavior of the dark current in each of the

MAMA detectors.

 

The basic monitor takes two 1380s ACCUM darks each week with each

detector. However, starting Oct 5, pairs are only included for weeks

that the LRP has external MAMA observations planned. The weekly pairs of

exposures for each detector are linked so that they are taken at

opposite ends of the same SAA free interval. This pairing of exposures

will make it easier to separate long and short term temporal variability

from temperature dependent changes.

 

For both detectors, additional blocks of exposures are taken once every

six months. These are groups of five 1314s FUV-MAMA Time-Tag darks or

five 3x315s NUV ACCUM darks distributed over a single SAA-free interval.

This will give more information on the brightness of the FUV MAMA dark

current as a function of the amount of time that the HV has been on, and

for the NUV MAMA will give a better measure of the short term

temperature dependence.

 

WFC3/ACS/IR 11677

 

Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing a

Hubble Legacy

 

With this proposal we will firmly establish the age of 47 Tuc from its

cooling white dwarfs. 47 Tuc is the nearest and least reddened of the

metal-rich disk globular clusters. It is also the template used for

studying the giant branches of nearby resolved galaxies. In addition,

the age sensitive magnitude spread between the main sequence turnoff and

horizontal branch is identical for 47 Tuc, two bulge globular clusters

and the bulge field population. A precise relative age constraint for 47

Tuc, compared to the halo clusters M4 and NGC 6397, both of which we

recently dated via white dwarf cooling, would therefore constrain when

the bulge formed relative to the old halo globular clusters. Of

particular interest is that with the higher quality ACS data on NGC

6397, we are now capable with the technique of white dwarf cooling of

determining ages to an accuracy of +/-0.4 Gyrs at the 95% confidence

level. Ages derived from the cluster turnoff are not currently capable

of reaching this precision. The important role that 47 Tuc plays in

galaxy formation studies, and as the metal-rich template for the

globular clusters, makes the case for a white dwarf cooling age for this

metal-rich cluster compelling.

 

Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs

younger than the Galactic halo. Others have suggested an age similar to

that of the most metal poor globular clusters. The current situation is

clearly uncertain and obviously a new approach to age dating this

important cluster is required.

 

With the observations of 47 Tuc, this project will complete a legacy for

HST. It will be the third globular cluster observed for white dwarf

cooling; the three covering almost the full metallicity range of the

cluster system. Unless JWST has its proposed bluer filters (700 and 900

nm) this science will not be possible perhaps for decades until a large

optical telescope is again in space. Ages for globular clusters from the

main sequence turnoff are less precise than those from white dwarf

cooling making the science with the current proposal truly urgent.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day- to-day basis, and

to build calibration dark current ramps for each of the sample sequences

to be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UVIS 11577

 

Opening New Windows on the Antennae with WFC3

 

We propose to use WFC3 to provide key observations of young star

clusters in "The Antennae" (NGC4038/39). Of prime importance is the

WFC3's ability to push the limiting UV magnitude FIVE mag deeper than

our previous WFPC2 observations. This corresponds to pushing the

limiting cluster mass from ~10**5 to ~10**3 solar masses for cluster

ages ~10**8 yrs. In addition, the much wider field of view of the WFC3

IR channel will allow us to map out both colliding disks rather than

just the Overlap Region between them. This will be especially important

for finding the youngest clusters that are still embedded in their

placental cocoons. The extensive set of narrow- band filters will

provide an effective means for determining the properties of shocks,

which are believed to be a primary triggering mechanism for star

formation. We will also use ACS in parallel with WFC3 to observe

portions of both the northern and southern tails at no additional

orbital cost. Finally, one additional primary WFC3 orbit will be used to

supplement exisiting HST observations of the star-forming "dwarf" galaxy

at the end of the southern tail. Hence, when completed we will have full

UBVI + H_alpha coverage (or more for the main galaxy) of four different

environments in the Antennae. In conjunction with the extensive

multi-wavelength database we have collected (both HST and ground based)

these observations will provide answers to fundamental questions such

as: How do these clusters form and evolve? How is star formation

triggered? How do star clusters affect the local and global ISM, and the

evolution of the galaxy as a whole? The Antennae galaxies are the

nearest example of a major disk--disk merger, and hence may represent

our best chance for understanding how mergers form tremendous numbers of

clusters and stars, both in the local universe and during galaxy

assembly at high redshift.

 

WFC3/UVIS 11657

 

The Population of Compact Planetary Nebulae in the Galactic Disk

 

We propose to secure narrow- and broad-band images of compact planetary

nebulae (PNe) in the Galactic Disk to study the missing link of the

early phases of post-AGB evolution. Ejected AGB envelopes become PNe

when the gas is ionized. PNe expand, and, when large enough, can be

studied in detail from the ground. In the interim, only the HST

capabilities can resolve their size, morphology, and central stars. Our

proposed observations will be the basis for a systematic study of the

onset of morphology. Dust properties of the proposed targets will be

available through approved Spitzer/IRS spectra, and so will the

abundances of the alpha-elements. We will be able thus to explore the

interconnection of morphology, dust grains, stellar evolution, and

populations. The target selection is suitable to explore the nebular and

stellar properties across the galactic disk, and to set constraints on

the galactic evolutionary models through the analysis of metallicity and

population gradients.

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS/IR 11644

 

A Dynamical-Compositional Survey of the Kuiper Belt: A New Window Into

the Formation of the Outer Solar System

 

The eight planets overwhelmingly dominate the solar system by mass, but

their small numbers, coupled with their stochastic pasts, make it

impossible to construct a unique formation history from the dynamical or

compositional characteristics of them alone. In contrast, the huge

numbers of small bodies scattered throughout and even beyond the

planets, while insignificant by mass, provide an almost unlimited number

of probes of the statistical conditions, history, and interactions in

the solar system. To date, attempts to understand the formation and

evolution of the Kuiper Belt have largely been dynamical simulations

where a hypothesized starting condition is evolved under the

gravitational influence of the early giant planets and an attempt is

made to reproduce the current observed populations. With little

compositional information known for the real Kuiper Belt, the test

particles in the simulation are free to have any formation location and

history as long as they end at the correct point. Allowing compositional

information to guide and constrain the formation, thermal, and

collisional histories of these objects would add an entire new dimension

to our understanding of the evolution of the outer solar system. While

ground based compositional studies have hit their flux limits already

with only a few objects sampled, we propose to exploit the new

capabilities of WFC3 to perform the first ever large-scale

dynamical-compositional study of Kuiper Belt Objects (KBOs) and their

progeny to study the chemical, dynamical, and collisional history of the

region of the giant planets. The sensitivity of the WFC3 observations

will allow us to go up to two magnitudes deeper than our ground based

studies, allowing us the capability of optimally selecting a target list

for a large survey rather than simply taking the few objects that can be

measured, as we have had to do to date. We have carefully constructed a

sample of 120 objects which provides both overall breadth, for a general

understanding of these objects, plus a large enough number of objects in

the individual dynamical subclass to allow detailed comparison between

and within these groups. These objects will likely define the core

Kuiper Belt compositional sample for years to come. While we have many

specific results anticipated to come from this survey, as with any

project where the field is rich, our current knowledge level is low, and

a new instrument suddenly appears which can exploit vastly larger

segments of the population, the potential for discovery -- both

anticipated and not -- is extraordinary.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                        SCHEDULED        SUCCESSFUL

FGS GSAcq                 6                     6      

FGS REAcq                 9                     9      

OBAD with Maneuver   4                     4      

 

SIGNIFICANT EVENTS: (None)