HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT    #5016

 

PERIOD COVERED: 5am January 20 - 5am January 21, 2010 (DOY 020/10:00z-021/10:00z)

 

OBSERVATIONS SCHEDULED

 

ACS/WFC3 11879

 

CCD Daily Monitor (Part 1)

 

This program comprises basic tests for measuring the read noise and dark

current of the ACS WFC and for tracking the growth of hot pixels. The

recorded frames are used to create bias and dark reference images for

science data reduction and calibration. This program will be executed

four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To

facilitate scheduling, this program is split into three proposals. This

proposal covers 352 orbits (22 weeks) from 31 August 2009 to 31 January

2010.

 

ACS/WFC3 11882

 

CCD Hot Pixel Annealing

 

All the data for this program is acquired using internal targets (lamps)

only, so all of the exposures should be taken during Earth occultation

time (but not during SAA passages). This program emulates the ACS

pre-flight ground calibration and post launch SMOV testing (program

8948), so that results from each epoch can be directly compared.

Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data

will be obtained over a range of signal levels for the Wide Field

Channel (WFC). The High Resolution Channel (HRC) visits have been

removed since it could not be repaired during SM4.

 

NIC2/WFC3/IR 11548

 

Infrared Imaging of Protostars in the Orion A Cloud: The Role of

Environment in Star Formation

 

We propose NICMOS and WFC3/IR observations of a sample of 252 protostars

identified in the Orion A cloud with the Spitzer Space Telescope. These

observations will image the scattered light escaping the protostellar

envelopes, providing information on the shapes of outflow cavities, the

inclinations of the protostars, and the overall morphologies of the

envelopes. In addition, we ask for Spitzer time to obtain 55-95 micron

spectra of 75 of the protostars. Combining these new data with existing

3.6 to 70 micron photometry and forthcoming 5-40 micron spectra measured

with the Spitzer Space Telescope, we will determine the physical

properties of the protostars such as envelope density, luminosity,

infall rate, and outflow cavity opening angle. By examining how these

properties vary with stellar density (i.e. clusters vs. groups vs.

isolation) and the properties of the surrounding molecular cloud; we can

directly measure how the surrounding environment influences protostellar

evolution, and consequently, the formation of stars and planetary

systems. Ultimately, this data will guide the development of a theory of

protostellar evolution.

 

STIS/CCD 11844

 

CCD Dark Monitor Part 1

 

The purpose of this proposal is to monitor the darks for the STIS CCD.

 

STIS/CCD 11846

 

CCD Bias Monitor-Part 1

 

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,

2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up

high-S/N superbiases and track the evolution of hot columns.

 

STIS/CCD/MA2 11674

 

A STIS NUV Search for Shocked-Interstellar and Circumstellar Gas towards

the Debris Disk System, HD 61005

 

Circumstellar debris disks provide the principle window for

investigating planet formation and evolution on timescales of 10-100

Myr. Unlike their younger counterparts, debris disks no longer contain

primordial material. The dust observed in these objects is instead

produced by collisional erosion of larger parent bodies in the

developing planetary system. Currently, only five confirmed debris disks

have detected circumstellar gas, studied primarily through UV absorption

spectroscopy. The exact production mechanisms for this replenished gas

are presently poorly constrained. However, the few objects studied so

far have revealed a wide range of intriguing properties, including a

stable Keplerian gas disk maintained by its high carbon abundance (Beta

Pic), and a rapidly expelled population of gas produced in collisions

between unstable planetesimals (Sigma Her). To add to this important set

of observations, we propose to obtain NUV STIS spectroscopy of the

debris disk host, HD 61005, a nearly edge-on debris disk notable for its

swept asymmetric morphology. These observations allow the likely

detection of circumstellar gas, making HD 61005 the first solar-type

debris disk host with gas detected in this way. Thus, the proposed

observations provide the unique opportunity to study gas in a debris

disk analogous to our early solar system. In addition to potentially

detecting circumstellar gas associated with this system, HD 61005 offers

the possibility of tracing interstellar bow-shocked gas. HD 61005 is a

unique debris disk in terms of its significant interaction with the

interstellar medium. The proposed observations will, therefore, be the

first to directly probe the interaction between a debris disk and its

surrounding interstellar material. STIS is ideally suited for this

experiment, providing sensitive NUV spectra with the required balance

between spectral resolution and wavelength coverage.

 

STIS/MA1/MA2 11857

 

STIS Cycle 17 MAMA Dark Monitor

 

This proposal monitors the behavior of the dark current in each of the

MAMA detectors.

 

The basic monitor takes two 1380s ACCUM darks each week with each

detector. However, starting Oct 5, pairs are only included for weeks

that the LRP has external MAMA observations planned. The weekly pairs of

exposures for each detector are linked so that they are taken at

opposite ends of the same SAA free interval. This pairing of exposures

will make it easier to separate long and short term temporal variability

from temperature dependent changes.

 

For both detectors, additional blocks of exposures are taken once every

six months. These are groups of five 1314s FUV-MAMA Time-Tag darks or

five 3x315s NUV ACCUM darks distributed over a single SAA-free interval.

This will give more information on the brightness of the FUV MAMA dark

current as a function of the amount of time that the HV has been on, and

for the NUV MAMA will give a better measure of the short term

temperature dependence.

 

WFC3/ACS/IR 11677

 

Is 47 Tuc Young? Measuring its White Dwarf Cooling Age and Completing a

Hubble Legacy

 

With this proposal we will firmly establish the age of 47 Tuc from its

cooling white dwarfs. 47 Tuc is the nearest and least reddened of the

metal-rich disk globular clusters. It is also the template used for

studying the giant branches of nearby resolved galaxies. In addition,

the age sensitive magnitude spread between the main sequence turnoff and

horizontal branch is identical for 47 Tuc, two bulge globular clusters

and the bulge field population. A precise relative age constraint for 47

Tuc, compared to the halo clusters M4 and NGC 6397, both of which we

recently dated via white dwarf cooling, would therefore constrain when

the bulge formed relative to the old halo globular clusters. Of

particular interest is that with the higher quality ACS data on NGC

6397, we are now capable with the technique of white dwarf cooling of

determining ages to an accuracy of +/-0.4 Gyrs at the 95% confidence

level. Ages derived from the cluster turnoff are not currently capable

of reaching this precision. The important role that 47 Tuc plays in

galaxy formation studies, and as the metal-rich template for the

globular clusters, makes the case for a white dwarf cooling age for this

metal-rich cluster compelling.

 

Several recent analyses have suggested that 47 Tuc is more than 2 Gyrs

younger than the Galactic halo. Others have suggested an age similar to

that of the most metal poor globular clusters. The current situation is

clearly uncertain and obviously a new approach to age dating this

important cluster is required.

 

With the observations of 47 Tuc, this project will complete a legacy for

HST. It will be the third globular cluster observed for white dwarf

cooling; the three covering almost the full metallicity range of the

cluster system. Unless JWST has its proposed bluer filters (700 and 900

nm) this science will not be possible perhaps for decades until a large

optical telescope is again in space. Ages for globular clusters from the

main sequence turnoff are less precise than those from white dwarf

cooling making the science with the current proposal truly urgent.

 

WFC3/IR 11202

 

The Structure of Early-type Galaxies: 0.1-100 Effective Radii

 

The structure, formation and evolution of early-type galaxies is still

largely an open problem in cosmology: how does the Universe evolve from

large linear scales dominated by dark matter to the highly non-linear

scales of galaxies, where baryons and dark matter both play important,

interacting, roles? To understand the complex physical processes

involved in their formation scenario, and why they have the tight

scaling relations that we observe today (e.g. the Fundamental Plane), it

is critically important not only to understand their stellar structure,

but also their dark- matter distribution from the smallest to the

largest scales. Over the last three years the SLACS collaboration has

developed a toolbox to tackle these issues in a unique and encompassing

way by combining new non-parametric strong lensing techniques, stellar

dynamics, and most recently weak gravitational lensing, with

high-quality Hubble Space Telescope imaging and VLT/Keck spectroscopic

data of early-type lens systems. This allows us to break degeneracies

that are inherent to each of these techniques separately and probe the

mass structure of early-type galaxies from 0.1 to 100 effective radii.

The large dynamic range to which lensing is sensitive allows us both to

probe the clumpy substructure of these galaxies, as well as their

low-density outer haloes. These methods have convincingly been

demonstrated, by our team, using smaller pilot-samples of SLACS lens

systems with HST data. In this proposal, we request observing time with

WFC3 and NICMOS to observe 53 strong lens systems from SLACS, to obtain

complete multi-color imaging for each system. This would bring the total

number of SLACS lens systems to 87 with completed HST imaging and

effectively doubles the known number of galaxy-scale strong lenses. The

deep HST images enable us to fully exploit our new techniques, beat down

low- number statistics, and probe the structure and evolution of

early-type galaxies, not only with a uniform data-set an order of

magnitude larger than what is available now, but also with a fully-

coherent and self-consistent methodological approach!

 

WFC3/IR 11915

 

IR Internal Flat Fields

 

This program is the same as 11433 (SMOV) and depends on the completion

of the IR initial alignment (Program 11425). This version contains three

instances of 37 internal orbits: to be scheduled early, middle, and near

the end of Cycle 17, in order to use the entire 110-orbit allocation.

 

In this test, we will study the stability and structure of the IR

channel flat field images through all filter elements in the WFC3-IR

channel. Flats will be monitored, i.e. to capture any temporal trends in

the flat fields and delta flats produced. High signal observations will

provide a map of the pixel-to- pixel flat field structure, as well as

identify the positions of any dust particles.

 

WFC3/UVIS 11628

 

Globular Cluster Candidates for Hosting a Central Black Hole

 

We are continuing our study of the dynamical properties of globular

clusters and we propose to obtain surface brightness profiles for high

concentration clusters. Our results to date show that the distribution

of central surface brightness slopes do not conform to standard models.

This has important implications for how they form and evolve, and

suggest the possible presence of central intermediate-mass black holes.

From our previous archival proposals (AR-9542 and AR-10315), we find

that many high concentration globular clusters do not have flat cores or

steep central cusps, instead they show weak cusps. Numerical simulations

suggest that clusters with weak cusps may harbor intermediate-mass black

holes and we have one confirmation of this connection with omega

Centauri. This cluster shows a shallow cusp in its surface brightness

profile, while kinematical measurements suggest the presence of a black

hole in its center. Our goal is to extend these studies to a sample

containing 85% of the Galactic globular clusters with concentrations

higher than 1.7 and look for objects departing from isothermal behavior.

The ACS globular cluster survey (GO-10775) provides enough objects to

have an excellent coverage of a wide range of galactic clusters, but it

contains only a couple of the ones with high concentration. The proposed

sample consists of clusters whose light profile can only be adequately

measured from space- based imaging. This would take us close to

completeness for the high concentration cases and therefore provide a

more complete list of candidates for containing a central black hole.

The dataset will also be combined with our existing kinematic

measurements and enhanced with future kinematic studies to perform

detailed dynamical modeling.

 

WFC3/UVIS 11657

 

The Population of Compact Planetary Nebulae in the Galactic Disk

 

We propose to secure narrow- and broad-band images of compact planetary

nebulae (PNe) in the Galactic Disk to study the missing link of the

early phases of post-AGB evolution. Ejected AGB envelopes become PNe

when the gas is ionized. PNe expand, and, when large enough, can be

studied in detail from the ground. In the interim, only the HST

capabilities can resolve their size, morphology, and central stars. Our

proposed observations will be the basis for a systematic study of the

onset of morphology. Dust properties of the proposed targets will be

available through approved Spitzer/IRS spectra, and so will the

abundances of the alpha-elements. We will be able thus to explore the

interconnection of morphology, dust grains, stellar evolution, and

populations. The target selection is suitable to explore the nebular and

stellar properties across the galactic disk, and to set constraints on

the galactic evolutionary models through the analysis of metallicity and

population gradients.

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED  SUCCESSFUL

FGS GSAcq               8               8

FGS REAcq               7               7

OBAD with Maneuver 7               7

 

SIGNIFICANT EVENTS: (None)