HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT      #5030

 

PERIOD COVERED: 5am February 09 - 5am February 10, 2010 (DOY 040/10:00z-041/10:00z)

 

OBSERVATIONS SCHEDULED

 

S/C 12046

 

COS FUV DCE Memory Dump

 

Whenever the FUV detector high voltage is on, count rate and current

draw information is collected, monitored, and saved to DCE memory. Every

10 msec the detector samples the currents from the HV power supplies

(HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are

saved in memory, along with a histogram of the number of occurrences of

each current value.

 

In the case of a HV transient (known as a "crackle" on FUSE), where one

of these currents exceeds a preset threshold for a persistence time, the

HV will shut down, and the DCE memory will be dumped and examined as

part of the recovery procedure. However, if the current exceeds the

threshold for less than the persistence time (a "mini-crackle" in FUSE

parlance), there is no way to know without dumping DCE memory. By

dumping and examining the histograms regularly, we will be able to

monitor any changes in the rate of "mini-crackles" and thus learn

something about the state of the detector.

 

STIS/CCD 11844

 

CCD Dark Monitor Part 1

 

The purpose of this proposal is to monitor the darks for the STIS CCD.

 

STIS/CCD 11846

 

CCD Bias Monitor-Part 1

 

The purpose of this proposal is to monitor the bias in the 1x1, 1x2,

2x1, and 2x2 bin settings at gain=1, and 1x1 at gain = 4, to build up

high-S/N superbiases and track the evolution of hot columns.

 

WFC3/ACS/IR 11563

 

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to

<0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

 

The first generations of galaxies were assembled around redshifts

z~7-10+, just 500-800 Myr after recombination, in the heart of the

reionization of the universe. We know very little about galaxies in this

period. Despite great effort with HST and other telescopes, less than

~15 galaxies have been reliably detected so far at z>7, contrasting with

the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near

the end of the reionization epoch. WFC3 IR can dramatically change this

situation, enabling derivation of the galaxy luminosity function and its

shape at z~7-8 to well below L*, measurement of the UV luminosity

density at z~7-8 and z~8-9, and estimates of the contribution of

galaxies to reionization at these epochs, as well as characterization of

their properties (sizes, structure, colors). A quantitative leap in our

understanding of early galaxies, and the timescales of their buildup,

requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can

achieve this with 192 WFC3 IR orbits on three disjoint fields

(minimizing cosmic variance): the HUDF and the two nearby deep fields of

the HUDF05. Our program uses three WFC3 IR filters, and leverages over

600 orbits of existing ACS data, to identify, with low contamination, a

large sample of over 100 objects at z~7-8, a very useful sample of ~23

at z~8-9, and limits at z~10. By careful placement of the WFC3 IR and

parallel ACS pointings, we also enhance the optical ACS imaging on the

HUDF and a HUDF05 field. We stress (1) the need to go deep, which is

paramount to define L*, the shape, and the slope alpha of the luminosity

function (LF) at these high redshifts; and (2) the far superior

performance of our strategy, compared with the use of strong lensing

clusters, in detecting significant samples of faint z~7-8 galaxies to

derive their luminosity function and UV ionizing flux. Our recent z~7.4

NICMOS results show that wide-area IR surveys, even of GOODS-like depth,

simply do not reach faint enough at z~7-9 to meet the LF and UV flux

objectives. In the spirit of the HDF and the HUDF, we will waive any

proprietary period, and will also deliver the reduced data to STScI. The

proposed data will provide a Legacy resource of great value for a wide

range of archival science investigations of galaxies at redshifts z~2-9.

The data are likely to remain the deepest IR/optical images until JWST

is launched, and will provide sources for spectroscopic follow up by

JWST, ALMA and EVLA.

 

WFC3/ACS/IR 11597

 

Spectroscopy of IR-Selected Galaxy Clusters at 1 < z < 1.5

 

We propose to obtain WFC3 G141 and G102 slitless spectroscopy of galaxy

clusters at 1 < z < 1.5 that were selected from the IRAC survey of the

Bootes NDWFS field. Our IRAC survey contains the largest sample of

spectroscopically confirmed clusters at z > 1. The WFC3 grism data will

measure H-alpha to determine SFR, and fit models to the low resolution

continua to determine stellar population histories for the brighter

cluster members, and redshifts for the red galaxies too faint for

ground-based optical spectroscopy.

 

WFC3/IR 11666

 

Chilly Pairs: A Search for the Latest-type Brown Dwarf Binaries and the

Prototype Y Dwarf

 

We propose to use HST/NICMOS to image a sample of 27 of the nearest (<

20 pc) and lowest luminosity T-type brown dwarfs in order to identify

and characterize new very low mass binary systems. Only 3 late-type T

dwarf binaries have been found to date, despite that fact that these

systems are critical benchmarks for evolutionary and atmospheric models

at the lowest masses. They are also the most likely systems to harbor Y

dwarf companions, an as yet unpopulated putative class of very cold (T <

600 K) brown dwarfs. Our proposed program will more than double the

number of T5-T9 dwarfs imaged at high resolution, with an anticipated

yield of ~5 new binaries with initial characterization of component

spectral types. We will be able to probe separations sufficient to

identify systems suitable for astrometric orbit and dynamical mass

measurements. We also expect one of our discoveries to contain the first

Y-type brown dwarf. Our proposed program complements and augments

ongoing ground-based adaptive optics surveys and provides pathway

science for JWST.

 

WFC3/IR 12051

 

Cross Calibration of NICMOS and WFC3 in the Low-Count-Rate Regime

 

NICMOS has played a key role in probing the deep near infrared regime

for a decade. It has been the only instrument available to observe faint

objects in the near infrared that are not observable from the ground.

However, the calibration of NICMOS has turned out to be difficult in the

low-count-rate regime. The NICMOS calibration team has extrapolated a

power-law to describe the apparent non-linearity in the NICMOS detectors

from measurements at ~50-5000 ADU/s to flux counts around 0.1-1 ADU/s.

Precise measurements of faint objects (such as SNe Ia at high redshift)

require us to reduce the uncertainties from this extrapolation. Here we

propose to determine the absolute zeropoint for faint objects by

cross-calibrating the WFC3 and NICMOS detectors in observations of early

type galaxies at redshifts z>1.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED  SUCCESSFUL

FGS GSAcq               11             11      

FGS REAcq               06             06      

OBAD with Maneuver 03             03      

 

SIGNIFICANT EVENTS: (None)