HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5093

 

PERIOD COVERED: 5am May 10 - 5am May 11, 2010 (DOY 130/09:00z-131/09:00z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED  SUCCESSFUL

FGS GSAcq               9                9      

FGS REAcq               7                7      

OBAD with Maneuver 8                8      

 

SIGNIFICANT EVENTS: (None)

 

 

 

 

OBSERVATIONS SCHEDULED

 

ACS/WFC 11995

 

CCD Daily Monitor (Part 2)

 

This program comprises basic tests for measuring the read noise and dark

current of the ACS WFC and for tracking the growth of hot pixels. The

recorded frames are used to create bias and dark reference images for

science data reduction and calibration. This program will be executed

four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To

facilitate scheduling, this program is split into three proposals. This

proposal covers 320 orbits (20 weeks) from 1 February 2010 to 20 June

2010.

 

ACS/WFC3 11882

 

CCD Hot Pixel Annealing

 

This program continues the monthly anneal that has taken place every

four weeks for the last three cycles. We now obtain WFC biases and darks

before and after the anneal in the same sequence as is done for the ACS

daily monitor (now done 4 times per week). So the anneal observation

supplements the monitor observation sets during the appropriate week.

Extended Pixel Edge Response (EPER) and First Pixel Response (FPR) data

will be obtained over a range of signal levels for the Wide Field

Channel (WFC). This program emulates the ACS pre-flight ground

calibration and post-launch SMOV testing (program 8948), so that results

from each epoch can be directly compared. The High Resolution Channel

(HRC) visits have been removed since it could not be repaired during

SM4.

 

This program also assesses the read noise, bias structure, and amplifier

cross-talk of ACS/WFC using the GAIN=1.4 A/D conversion setting. This

investigation serves as a precursor to a more comprehensive study of WFC

performance using GAIN=1.4.

 

COS/FUV 11895

 

FUV Detector Dark Monitor

 

Monitor the FUV detector dark rate by taking long science exposures

without illuminating the detector. The detector dark rate and spatial

distribution of counts will be compared to pre-launch and SMOV data in

order to verify the nominal operation of the detector. Variations of

count rate as a function of orbital position will be analyzed to find

dependence of dark rate on proximity to the SAA. Dependence of dark rate

as function of time will also be tracked.

 

COS/NUV 11537

 

COS-GTO: NUV Spectra of Bright Kuiper Belt Objects

 

NUV spectra of Kuiper Belt Objects (KBOs) other than Pluto have never

yet been obtained. We seek to use COS's sensitivity to determine NUV KBO

reflectance slopes and to compare/contrast different KBO spectra by

observing two of the brightest, 2005 FY9 and 2003 EL61, across the full

NUV band. These particular KBOs are known to have some distinctive

characteristics, prominently showing solid methane (2005 FY9) and water

ice (2003 EL61) absorption in near-IR spectra. 2003 EL61 is also unique

for its elongated shape; its rapid, 3.9-hour rotation period; and the

presence of two moons.

 

COS/NUV 11894

 

NUV Detector Dark Monitor

 

The purpose of this proposal is to measure the NUV detector dark rate by

taking long science exposures with no light on the detector. The

detector dark rate and spatial distribution of counts will be compared

to pre-launch and SMOV data in order to verify the nominal operation of

the detector. Variations of count rate as a function of orbital position

will be analyzed to find dependence of dark rate on proximity to the

SAA. Dependence of dark rate as function of time will also be tracked.

 

COS/NUV/FUV 11598

 

How Galaxies Acquire their Gas: A Map of Multiphase Accretion and

Feedback in Gaseous Galaxy Halos

 

We propose to address two of the biggest open questions in galaxy

formation - how galaxies acquire their gas and how they return it to the

IGM - with a concentrated COS survey of diffuse multiphase gas in the

halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to

establish a basic set of observational facts about the physical state,

metallicity, and kinematics of halo gas, including the sky covering

fraction of hot and cold material, the metallicity of infall and

outflow, and correlations with galaxy stellar mass, type, and color -

all as a function of impact parameter from 10 - 150 kpc. Theory suggests

that the bimodality of galaxy colors, the shape of the luminosity

function, and the mass-metallicity relation are all influenced at a

fundamental level by accretion and feedback, yet these gas processes are

poorly understood and cannot be predicted robustly from first

principles. We lack even a basic observational assessment of the

multiphase gaseous content of galaxy halos on 100 kpc scales, and we do

not know how these processes vary with galaxy properties. This ignorance

is presently one of the key impediments to understanding galaxy

formation in general. We propose to use the high-resolution gratings

G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive

column density measurements of a comprehensive suite of multiphase ions

in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from

the Sloan Digital Sky Survey. In aggregate, these sightlines will

constitute a statistically sound map of the physical state and

metallicity of gaseous halos, and subsets of the data with cuts on

galaxy mass, color, and SFR will seek out predicted variations of gas

properties with galaxy properties. Our interpretation of these data will

be aided by state-of-the-art hydrodynamic simulations of accretion and

feedback, in turn providing information to refine and test such models.

We will also use Keck, MMT, and Magellan (as needed) to obtain optical

spectra of the QSOs to measure cold gas with Mg II, and optical spectra

of the galaxies to measure SFRs and to look for outflows. In addition to

our other science goals, these observations will help place the Milky

Way's population of multiphase, accreting High Velocity Clouds (HVCs)

into a global context by identifying analogous structures around other

galaxies. Our program is designed to make optimal use of the unique

capabilities of COS to address our science goals and also generate a

rich dataset of other absorption-line systems

 

COS/NUV/FUV 11837

 

A Co-ordinated Chandra, Suzaku, HST Campaign for NGC3227

 

We propose a 200ksec LETGS/HRC observation of NGC3227, a bright, nearby

AGN, coordinated with Suzaku monitoring and HST UV spectra. NGC3227

seems to have a distant, dusty, 'lukewarm' Warm Absorber (WA), AND a

smaller, high ionization, WA. For these WAs an LETGS grating spectrum

will determine: ionization parameter, NH, 'b'-parameter, metal ratios

and dust-specific features. The WA location will be known from Suzaku

monitoring; together Chandra and Suzaku observations determine the mass

loss rate. A joint HST/COS UV spectrum gives absolute metallicity and

velocity and covering factor. With the WAs well characterized, NGC3227

joins two other WAs to span M BH - L/L Edd space, allowing tests of

AGN-galaxy feedback models.

 

FGS 11704

 

The Ages of Globular Clusters and the Population II Distance Scale

 

Globular clusters are the oldest objects in the universe whose age can

be accurately determined. The dominant error in globular cluster age

determinations is the uncertain Population II distance scale. We propose

to use FGS 1R to obtain parallaxes with an accuracy of 0.2

milliarcsecond for 9 main sequence stars with [Fe/H] < -1.5. This will

determine the absolute magnitude of these stars with accuracies of 0.04

to 0.06mag. This data will be used to determine the distance to 24

metal-poor globular clusters using main sequence fitting. These

distances (with errors of 0.05 mag) will be used to determine the ages

of globular clusters using the luminosity of the subgiant branch as an

age indicator. This will yield absolute ages with an accuracy of 5%,

about a factor of two improvement over current estimates. Coupled with

existing parallaxes for more metal-rich stars, we will be able to

accurately determine the age for globular clusters over a wide range of

metallicities in order to study the early formation history of the Milky

Way and provide an independent estimate of the age of the universe.

 

The Hipparcos database contains only 1 star with [Fe/H] < -1.4 and an

absolute magnitude error less than 0.18 mag which is suitable for use in

main sequence fitting. Previous attempts at main sequence fitting to

metal-poor globular clusters have had to rely on theoretical

calibrations of the color of the main sequence. Our HST parallax program

will remove this source of possible systematic error and yield distances

to metal-poor globular clusters which are significantly more accurate

than possible with the current parallax data. The HST parallax data will

have errors which are 10 times smaller than the current parallax data.

Using the HST parallaxes, we will obtain main sequence fitting distances

to 11 globular clusters which contain over 500 RR Lyrae stars. This will

allow us to calibrate the absolute magnitude of RR Lyrae stars, a

commonly used Population II distance indicator.

 

S/C 12046

 

COS FUV DCE Memory Dump

 

Whenever the FUV detector high voltage is on, count rate and current

draw information is collected, monitored, and saved to DCE memory. Every

10 msec the detector samples the currents from the HV power supplies

(HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are

saved in memory, along with a histogram of the number of occurrences of

each current value.

 

In the case of a HV transient (known as a "crackle" on FUSE), where one

of these currents exceeds a preset threshold for a persistence time, the

HV will shut down, and the DCE memory will be dumped and examined as

part of the recovery procedure. However, if the current exceeds the

threshold for less than the persistence time (a "mini-crackle" in FUSE

parlance), there is no way to know without dumping DCE memory. By

dumping and examining the histograms regularly, we will be able to

monitor any changes in the rate of "mini-crackles" and thus learn

something about the state of the detector.

 

STIS/CC 11654

 

UV Studies of a Core Collapse Supernova

 

Observations of the UV spectrum of core collapse SNe hold unique

information about nucleosynthesis, the mass loss history, shock physics

and dust formation in the explosion on massive stars. This proposal aims

at a detailed study of a bright core collapse SN, discovered by any of

the many ongoing surveys, either a Type IIP, IIn or Ibc supernova. We

will address the role of circumstellar interaction and mass loss through

CNO lines in the UV, the nature of dust formation from UV line profiles

and use the UV continuum as a diagnostic of non-thermal emission from

the shock. The overall goal of our team is to achieve a better

understanding of these objects by combining HST data with complementary

ground-based observations. We have used HST to obtain UV spectra from

the explosion to the nebular phase. Over the past decade, we have

conducted studies of nearby SNe with HST, and we have published an

extensive series of papers. When Nature provides a bright candidate, HST

should be ready to respond.

 

STIS/CC 11845

 

CCD Dark Monitor Part 2

 

Monitor the darks for the STIS CCD.

 

STIS/CC 11847

 

CCD Bias Monitor-Part 2

 

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,

and 1x1 at gain = 4, to build up high-S/N superbiases and track the

evolution of hot columns.

 

STIS/MA1 11861

 

MAMA FUV Flats

 

This program will obtain FUV-MAMA observations of the STIS internal

Krypton lamp to construct an FUV flat applicable to all FUV modes.

 

WFC3/ACS/UVIS 11877

 

HST Cycle 17 and Post-SM4 Optical Monitor

 

This program is the Cycle 17 implementation of the HST Optical

Monitoring Program.

 

The 36 orbits comprising this proposal will utilize ACS (Wide Field

Channel) and WFC3 (UVIS Channel) to observe stellar cluster members in

parallel with multiple exposures over an orbit. Phase retrieval

performed on the PSF in each image will be used to measure primarily

focus, with the ability to explore apparent coma, and astigmatism

changes in WFC3.

 

The goals of this program are to: 1) monitor the overall OTA focal

length for the purposes of maintaining focus within science tolerances

2) gain experience with the relative effectiveness of phase retrieval on

WFC3/UVIS PSFs 3) determine focus offset between the imagers and

identify any SI-specific focus behavior and dependencies

 

If need is determined, future visits will be modified to interleave

WFC3/IR channel and STIS/CCD focii measurements.

 

WFC3/IR 12051

 

Cross Calibration of NICMOS and WFC3 in the Low-Count-Rate Regime

 

NICMOS has played a key role in probing the deep near infrared regime

for a decade. It has been the only instrument available to observe faint

objects in the near infrared that are not observable from the ground.

However, the calibration of NICMOS has turned out to be difficult in the

low-count-rate regime. The NICMOS calibration team has extrapolated a

power-law to describe the apparent non-linearity in the NICMOS detectors

from measurements at ~50-5000 ADU/s to flux counts around 0.1-1 ADU/s.

Precise measurements of faint objects (such as SNe Ia at high redshift)

require us to reduce the uncertainties from this extrapolation. Here we

propose to determine the absolute zeropoint for faint objects by

cross-calibrating the WFC3 and NICMOS detectors in observations of early

type galaxies at redshifts z>1.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UVIS 11595

 

Turning Out the Light: A WFC3 Program to Image z>2 Damped Lyman Alpha

Systems

 

We propose to directly image the star-forming regions of z>2 damped Lya

systems (DLAs) using the WFC3/UVIS camera on the Hubble Space Telescope.

In contrast to all previous attempts to detect the galaxies giving rise

to high redshift DLAs, we will use a novel technique that completely

removes the glare of the background quasar. Specifically, we will target

quasar sightlines with multiple DLAs and use the higher redshift DLA as

a ``blocking filter'' (via Lyman limit absorption) to eliminate all FUV

emission from the quasar. This will allow us to carry out a deep search

for FUV emission from the lower redshift DLA, shortward of the Lyman

limit of the higher redshift absorber. The unique filter set and high

spatial resolution afforded by WFC3/UVIS will then enable us to directly

image the lower redshift DLA and thus estimate its size, star- formation

rate and impact parameter from the QSO sightline. We propose to observe

a sample of 20 sightlines, selected primarily from the SDSS database,

requiring a total of 40 HST orbits. The observations will allow us to

determine the first FUV luminosity function of high redshift DLA

galaxies and to correlate the DLA galaxy properties with the ISM

characteristics inferred from standard absorption-line analysis to

significantly improve our understanding of the general DLA population.

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.

 

WFC3/UVIS 11912

 

UVIS Internal Flats

 

This proposal will be used to assess the stability of the flat field

structure for the UVIS detector throughout the 15 months of Cycle 17.

The data will be used to generate on-orbit updates for the delta-flat

field reference files used in the WFC3 calibration pipeline, if

significant changes in the flat structure are seen.