HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5103

 

PERIOD COVERED: 5am May 24 - 5am May 25, 2010 (DOY 144/09:00z-145/09:00z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED  SUCCESSFUL

FGS GSAcq               07            07       

FGS REAcq               09            09       

OBAD with Maneuver 04            04       

 

SIGNIFICANT EVENTS: (None)

 

 

OBSERVATIONS SCHEDULED:

 

ACS/WFC 11591

 

Are Low-Luminosity Galaxies Responsible for Cosmic Reionization?

 

Our group has demonstrated that massive clusters, acting as powerful

cosmic lenses, can constrain the abundance and properties of

low-luminosity star-forming sources beyond z~6; such sources are thought

to be responsible for ending cosmic reionization. The large

magnification possible in the critical regions of well-constrained

clusters brings sources into view that lie at or beyond the limits of

conventional exposures such as the UDF. We have shown that the

combination of HST and Spitzer is particularly effective in delivering

the physical properties of these distant sources, constraining their

mass, age and past star formation history. Indirectly, we therefore gain

a valuable glimpse to yet earlier epochs. Recognizing the result (and

limitations) of blank field surveys, we propose a systematic search

through 10

 

lensing clusters with ACS/F814W and WFC3/[F110W+F160W] (in conjunction

with existing deep IRAC data). Our goal is to measure with great

accuracy the luminosity function at z~7 over a range of at least 3

magnitude, based on the identification of about 50 lensed galaxies at

6.5<z<8. Our survey will mitigate cosmic variance and extend the search

both to lower luminosities and, by virtue of the WFC3/IRAC combination,

to higher redshift. Thanks to the lensing amplification spectroscopic

follow-up will be possible and make our findings the most robust prior

to the era of JWST and the ELTs.

 

ACS/WFC/WFC3/IR 11142

 

Revealing the Physical Nature of Infrared Luminous Galaxies at 0.3<z<2.7

Using HST and Spitzer

 

We aim to determine physical properties of IR luminous galaxies at

0.3<z<2.7 by requesting coordinated HST/NIC2 and MIPS 70um observations

of a unique, 24um flux-limited sample with complete Spitzer mid-IR

spectroscopy. The 150 sources investigated in this program have S(24um)

> 0.8mJy and their mid-IR spectra have already provided the majority

targets with spectroscopic redshifts (0.3<z<2.7). The proposed

150~orbits of NIC2 and 66~hours of MIPS 70um will provide the physical

measurements of the light distribution at the rest-frame ~8000A and

better estimates of the bolometric luminosity. Combining these

parameters together with the rich suite of spectral diagnostics from the

mid-IR spectra, we will (1) measure how common mergers are among LIRGs

and ULIRGs at 0.3<z<2.7, and establish if major mergers are the drivers

of z>1 ULIRGs, as in the local Universe. (2) study the co-evolution of

star formation and blackhole accretion by investigating the relations

between the fraction of starburst/AGN measured from mid-IR spectra vs.

HST morphologies, L(bol) and z. (3) obtain the current best estimates of

the far-IR emission, thus L(bol) for this sample, and establish if the

relative contribtuion of mid-to-far IR dust emission is correlated with

morphology (resolved vs. unresolved).

 

ACS/WFC/WFC3/IR 11663

 

Formation and Evolution of Massive Galaxies in the Richest Environments

at 1.5 < z < 2.0

 

We propose to image seven 1.5<z<2 clusters and groups from the IRAC

Shallow Cluster Survey with WFC3 and ACS in order to study the formation

and evolution of massive galaxies in the richest environments in the

Universe in this important redshift range. We will measure the evolution

of the sizes and morphologies of massive cluster galaxies, as a function

of redshift, richness, radius and local density. In combination with

allocated Keck spectroscopy, we will directly measure the dry merger

fraction in these clusters, as well as the evolution of Brightest

Cluster Galaxies (BCGs) over this redshift range where clear model

predictions can be confronted. Finally we will measure both the epoch of

formation of the stellar populations and the assembly history of that

stellar mass, the two key parameters in the modern galaxy formation

paradigm.

 

COS/FUV/COS/NUV 11741

 

Probing Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey

for O VI, Ne VIII, Mg X, and Si XII Absorption Systems

 

Currently we can only account for half of the baryons (or less) expected

to be found in the nearby universe based on D/H and CMB observations.

This "missing baryons problem" is one of the highest-priority challenges

in observational extragalatic astronomy. Cosmological simulations

suggest that the baryons are hidden in low-density, shock-heated

intergalactic gas in the log T = 5 - 7 range, but intensive UV and X-ray

surveys using O VI, O VII, and O VIII absorption lines have not yet

confirmed this prediction. We propose to use COS to carry out a

sensitive survey for Ne VIII and Mg X absorption in the spectra of nine

QSOs at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also

search for Si XII. This survey will provide more robust constraints on

the quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3,

and the data will provide rich constraints on the metal enrichment,

physical conditions, and nature of a wide variety of QSO absorbers in

addition to the warm-hot systems. By comparing the results to other

surveys at lower redshifts (with STIS, FUSE, and from the COS GTO

programs), the project will also enable the first study of how these

absorbers evolve with redshift at z < 1. By combining the program with

follow-up galaxy redshift surveys, we will also push the study of

galaxy-absorber relationships to higher redshifts, with an emphasis on

the distribution of the WHIM with respect to the large-scale matter

distribution of the universe..

 

FGS 11789

 

An Astrometric Calibration of Population II Distance Indicators

 

In 2002 HST produced a highly precise parallax for RR Lyrae. That

measurement resulted in an absolute magnitude, M(V)= 0.61+/-0.11, a

useful result, judged by the over ten refereed citations each year

since. It is, however, unsatisfactory to have the direct,

parallax-based, distance scale of Population II variables based on a

single star. We propose, therefore, to obtain the parallaxes of four

additional RR Lyrae stars and two Population II Cepheids, or W Vir

stars. The Population II Cepheids lie with the RR Lyrae stars on a

common K-band Period-Luminosity relation. Using these parallaxes to

inform that relationship, we anticipate a zero-point error of 0.04

magnitude. This result should greatly strengthen confidence in the

Population II distance scale and increase our understanding of RR Lyrae

star and Pop II Cepheid astrophysics.

 

S/C/WFC3/IR 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by GOs in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

STIS/CCD 11845

 

CCD Dark Monitor Part 2

 

Monitor the darks for the STIS CCD.

 

STIS/CCD 11847

 

CCD Bias Monitor-Part 2

 

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,

and 1x1 at gain = 4, to build up high-S/N superbiases and track the

evolution of hot columns.

 

STIS/MA1 12079

 

STIS PtCr/Ne Lamp Ratios

 

We will provide improved information on the ratio of the STIS wavelength

calibration lamps at all wavelengths. The LINE & HITM1 lamps have faded

by a factor of several since launch, and at the shortest wavelengths the

fading is enough to have significantly impacted the S/N of the wavecals.

The FUV flux of the HITM2 lamp has not been checked since 1997, and so a

detailed comparison of all three lamps is needed to support a proper

wavelength calibration for GO proposals.

 

WFC3/IR 11702

 

Search for Very High-z Galaxies with WFC3 Pure Parallel

 

WFC3 will provide an unprecedented probe to the early universe beyond

the current redshift frontier. Here we propose a pure parallel program

using this new instrument to search for Lyman-break galaxies at

6.5<z<8.8 and to probe the epoch of reionization, a hallmark event in

the history of the early universe. We request 200 orbits, spreading over

30 ~ 50 high Galactic latitude visits (|b|>20deg) that last for 4 orbits

and longer, resulting a total survey area of about 140~230 square

arcminute. Based on our understanding of the new HST parallel

observation scheduling process, we believe that the total number of

long-duration pure parallel visits in Cycle 17 should be sufficient to

accommodate our program. We waive all proprietary rights to our data,

and will also make the enhanced data products public in a timely manner.

(1) We will use both the UVIS and the IR channels, and do not need to

seek optical data from elsewhere. (2) Our program will likely triple the

size of the probable candidate samples at z~7 and z~8, and will

complement other targeted programs aiming at the similar redshift range.

(3) Being a pure parallel program, our survey will only make very

limited demand on the scarce HST resources. More importantly, as the

pure parallel pointings will be at random sight-lines, our program will

be least affected by the bias due to the large scale structure ("cosmic

variance"). (4) We aim at the most luminous LBG population, and will

address the bright-end of the luminosity function at z~8 and z~7. We

will constrain the value of L* in particular, which is critical for

understanding the star formation process and the stellar mass assembly

history in the first few hundred million years of the universe. (5) The

candidates from our survey, most of which will be the brightest ones

that any surveys would be able to find, will have the best chance to be

spectroscopically confirmed at the current 8--10m telescopes. (6) We

will also find a large number of extremely red, old galaxies at

intermediate redshifts, and the fine spatial resolution offered by the

WFC3 will enable us constrain their formation history based on the study

of their morphology, and hence shed light on their connection to the

very early galaxies in the universe.

 

WFC3/UVI 11556

 

Investigations of the Pluto System

 

We propose a set of high SNR observations of the Pluto system that will

provide improved lightcurves, orbits, and photometric properties of Nix

and Hydra. The key photometric result for Nix and Hydra will be a vastly

improved lightcurve shape and rotation period to test if the objects are

in synchronous rotation or not. A second goal of this program will be to

retrieve a new epoch of albedo map for the surface of Pluto. These

observations will also improve masses and in some case densities for the

bodies in the Pluto system.

 

WFC3/UVI 11702

 

Search for Very High-z Galaxies with WFC3 Pure Parallel

 

WFC3 will provide an unprecedented probe to the early universe beyond

the current redshift frontier. Here we propose a pure parallel program

using this new instrument to search for Lyman-break galaxies at

6.5<z<8.8 and to probe the epoch of reionization, a hallmark event in

the history of the early universe. We request 200 orbits, spreading over

30 ~ 50 high Galactic latitude visits (|b|>20deg) that last for 4 orbits

and longer, resulting a total survey area of about 140~230 square

arcminute. Based on our understanding of the new HST parallel

observation scheduling process, we believe that the total number of

long-duration pure parallel visits in Cycle 17 should be sufficient to

accommodate our program. We waive all proprietary rights to our data,

and will also make the enhanced data products public in a timely manner.

(1) We will use both the UVIS and the IR channels, and do not need to

seek optical data from elsewhere. (2) Our program will likely triple the

size of the probable candidate samples at z~7 and z~8, and will

complement other targeted programs aiming at the similar redshift range.

(3) Being a pure parallel program, our survey will only make very

limited demand on the scarce HST resources. More importantly, as the

pure parallel pointings will be at random sight-lines, our program will

be least affected by the bias due to the large scale structure ("cosmic

variance"). (4) We aim at the most luminous LBG population, and will

address the bright-end of the luminosity function at z~8 and z~7. We

will constrain the value of L* in particular, which is critical for

understanding the star formation process and the stellar mass assembly

history in the first few hundred million years of the universe. (5) The

candidates from our survey, most of which will be the brightest ones

that any surveys would be able to find, will have the best chance to be

spectroscopically confirmed at the current 8--10m telescopes. (6) We

will also find a large number of extremely red, old galaxies at

intermediate redshifts, and the fine spatial resolution offered by the

WFC3 will enable us constrain their formation history based on the study

of their morphology, and hence shed light on their connection to the

very early galaxies in the universe.

 

WFC3/UVI 11730

 

Continued Proper Motions of the Magellanic Clouds: Orbits, Internal

Kinematics, and Distance

 

In Cycles 11 and 13 we obtained two epochs of ACS/HRC data for fields in

the Magellanic Clouds centered on background quasars. We used these data

to determine the proper motions of the LMC and SMC to better than 5% and

15% respectively. The results had a number of unexpected implications

for the Milky Way-LMC-SMC system and received considerable attention in

the literature and in the press. The implied three-dimensional

velocities are larger than previously believed and close to the escape

velocity in a standard 10^12 solar mass Milky Way dark halo. Our orbit

calculations suggest the Clouds may not be bound to the Milky Way or may

just be on their first passage, both of which are unexpected in view of

traditional interpretations of the Magellanic Stream. Alternatively, the

Milky Way dark halo may be a factor two more massive than previously

believed, which would be surprising in view of other observational

constraints. Also, the relative velocity between the LMC and SMC was

larger than expected, leaving open the possibility that the Clouds may

not be bound to each other. To further verify and refine our results we

requested an additional epoch data in Cycle 16 which is being executed

with WFPC2/PC due to the failure of ACS. A detailed analysis of one LMC

field shows that the field proper motion using all three epochs of data

is consistent within 1-sigma with the two-epoch data, thus verifying

that there are no major systematic effects in our previous measurements.

The random errors, however, are only smaller by a factor of 1.4 because

of the relatively large errors in the WFPC2 data. A prediction for a

fourth epoch with measurement errors similar to epochs 1 and 2 shows

that the uncertainties will improve by a factor of 3. This will allow us

to better address whether the Clouds are indeed bound to each other and

to the Milky Way. It will also allow us to constrain the internal

motions of various populations within the Clouds, and to determine a

distance to the LMC using rotational parallax. Continuation of this

highly successful program is therefore likely to provide important

additional insights. Execution in SNAPshot mode guarantees maximally

efficient use of HST resources.

 

WFC3/UVI 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias<BR>and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals<BR>throughout

the cycle to support subarray science observations. The internals from

this proposal,<BR>along with those from the anneal procedure (11909),

will be used to generate the necessary superbias<BR>and superdark

reference files for the calibration pipeline (CDBS).

 

WFC3/UVI 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly-exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.