HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5120

 

PERIOD COVERED: 5am June 17 - 5am June 18, 2010 (DOY 168/09:00z-169/09:00z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                     SCHEDULED SUCCESSFUL

FGS GSAcq               6              6

FGS REAcq               9              9

OBAD with Maneuver 5              5

 

SIGNIFICANT EVENTS: (None)

 

 

 

OBSERVATIONS SCHEDULED:

 

ACS/WFC3 11593

 

Dynamical Masses of the Coolest Brown Dwarfs

 

T dwarfs are excellent laboratories to study the evolution and the

atmospheric physics of both brown dwarfs and extrasolar planets. To

date, only a single T dwarf binary has a dynamical mass determination,

and more are sorely needed. The prospects of measuring more dynamical

masses over the next decade are limited to 6 known short-period T dwarf

binaries. We propose here to obtain Long-Term HST/ACS monitoring for the

3 of the 6 binaries which cannot be resolved with AO from the ground.

Upon completion, our program will substantially increase the number of T

dwarf dynamical mass measurements and thereby provide key benchmarks for

testing theoretical models of ultracool objects.

 

COS/FUV 11686

 

The Cosmological Impact of AGN Outflows: Measuring Absolute Abundances

and Kinetic Luminosities

 

AGN outflows are increasingly invoked as a major contributor to the

formation and evolution of supermassive black holes, their host

galaxies, the surrounding IGM, and cluster cooling flows. Our HST/COS

proposal will determine reliable absolute chemical abundances in six AGN

outflows, which influences several of the processes mentioned above. To

date there is only one such determination, done by our team on Mrk 279

using 16 HST/STIS orbits and 100 ksec of FUSE time. The advent of COS

and its high sensitivity allows us to choose among fainter objects at

redshifts high enough to preclude the need for FUSE. This will allow us

to determine the absolute abundances for six AGN (all fainter than Mrk

279) using only 40 HST COS orbits. This will put abundances studies in

AGN on a firm footing, an elusive goal for the past four decades. In

addition, prior FUSE observations of four of these targets indicate that

it is probable that the COS observations will detect troughs from

excited levels of C III. These will allow us to measure the distances of

the outflows and thereby determine their kinetic luminosity, a major

goal in AGN feedback research.
 11686( 7) - 25-Sep-2009 13:44:14 - [ 2]

 

We will use our state of the art column density extraction methods and

velocity-dependent photoionization models to determine the abundances

and kinetic luminosity. Previous AGN outflow projects suffered from the

constraints of deciding what science we could do using ONE of the

handful of bright targets that were observable. With COS we can choose

the best sample for our experiment. As an added bonus, most of the

spectral range of our targets has not been observed previously, greatly

increasing the discovery phase space.

 

COS/NUV/FUV 11598

 

How Galaxies Acquire their Gas: A Map of Multiphase Accretion and

Feedback in Gaseous Galaxy Halos

 

We propose to address two of the biggest open questions in galaxy

formation - how galaxies acquire their gas and how they return it to the

IGM - with a concentrated COS survey of diffuse multiphase gas in the

halos of SDSS galaxies at z = 0.15 - 0.35. Our chief science goal is to

establish a basic set of observational facts about the physical state,

metallicity, and kinematics of halo gas, including the sky covering

fraction of hot and cold material, the metallicity of infall and

outflow, and correlations with galaxy stellar mass, type, and color -

all as a function of impact parameter from 10 - 150 kpc. Theory suggests

that the bimodality of galaxy colors, the shape of the luminosity

function, and the mass-metallicity relation are all influenced at a

fundamental level by accretion and feedback, yet these gas processes are

poorly understood and cannot be predicted robustly from first

principles. We lack even a basic observational assessment of the

multiphase gaseous content of galaxy halos on 100 kpc scales, and we do

not know how these processes vary with galaxy properties. This ignorance

is presently one of the key impediments to understanding galaxy

formation in general. We propose to use the high-resolution gratings

G130M and G160M on the Cosmic Origins Spectrograph to obtain sensitive

column density measurements of a comprehensive suite of multiphase ions

in the spectra of 43 z < 1 QSOs lying behind 43 galaxies selected from

the Sloan Digital Sky Survey. In aggregate, these sightlines will

constitute a statistically sound map of the physical state and

metallicity of gaseous halos, and subsets of the data with cuts on

galaxy mass, color, and SFR will seek out predicted variations of gas

properties with galaxy properties. Our interpretation of these data will

be aided by state-of-the-art hydrodynamic simulations of accretion and

feedback, in turn providing information to refine and test such models.

We will also use Keck, MMT, and Magellan (as needed) to obtain optical

spectra of the QSOs to measure cold gas with Mg II, and optical spectra

of the galaxies to measure SFRs and to look for outflows. In addition to

our other science goals, these observations will help place the Milky

Way's population of multiphase, accreting High Velocity Clouds (HVCs)

into a global context by identifying analogous structures around other

galaxies. Our program is designed to make optimal use of the unique

capabilities of COS to address our science goals and also generate a

rich dataset of other absorption-line systems

 

COS/NUV/FUV 11698

 

The Structure and Dynamics of Virgo's Multi-Phase Intracluster Medium

 

The dynamical flows of the intracluster medium (ICM) are largely

unknown. We propose to map the spatial and kinematic distribution of the

warm ICM of the nearby Virgo cluster using the Cosmic Origins

Spectrograph. 15 sightlines at a range of impact parameters within the

virial radius of the cluster (0.2 - 1.7 Mpc) will be probed for

Lyman-alpha absorption and the data compared to blind HI, dust and x-ray

surveys to create a multi-phase map of the cluster's ICM. Absorption

line sightlines are commonly 40-100 kpc from a galaxy, allowing the flow

of baryons between galaxies and the ICM to be assessed. The velocity

distribution of the absorbers will be directly compared to simulations

and used to constrain the turbulent motions of the ICM. This proposal

will result in the first map of a cluster's warm ICM and provide

important tests for our theoretical understanding of cluster formation

and the treatment of gas cooling in cosmological simulations.

 

FGS 11704

 

The Ages of Globular Clusters and the Population II Distance Scale

 

Globular clusters are the oldest objects in the universe whose age can

be accurately determined. The dominant error in globular cluster age

determinations is the uncertain Population II distance scale. We propose

to use FGS 1R to obtain parallaxes with an accuracy of 0.2

milliarcsecond for 9 main sequence stars with [Fe/H] < -1.5. This will

determine the absolute magnitude of these stars with accuracies of 0.04

to 0.06mag. This data will be used to determine the distance to 24

metal-poor globular clusters using main sequence fitting. These

distances (with errors of 0.05 mag) will be used to determine the ages

of globular clusters using the luminosity of the subgiant branch as an

age indicator. This will yield absolute ages with an accuracy of 5%,

about a factor of two improvement over current estimates. Coupled with

existing parallaxes for more metal-rich stars, we will be able to

accurately determine the age for globular clusters over a wide range of

metallicities in order to study the early formation history of the Milky

Way and provide an independent estimate of the age of the universe.

 

The Hipparcos database contains only 1 star with [Fe/H] < -1.4 and an

absolute magnitude error less than 0.18 mag which is suitable for use in

main sequence fitting. Previous attempts at main sequence fitting to

metal-poor globular clusters have had to rely on theoretical

calibrations of the color of the main sequence. Our HST parallax program

will remove this source of possible systematic error and yield distances

to metal-poor globular clusters which are significantly more accurate

than possible with the current parallax data. The HST parallax data will

have errors which are 10 times smaller than the current parallax data.

Using the HST parallaxes, we will obtain main sequence fitting distances

to 11 globular clusters which contain over 500 RR Lyrae stars. This will

allow us to calibrate the absolute magnitude of RR Lyrae stars, a

commonly used Population II distance indicator.

 

S/C 12046

 

COS FUV DCE Memory Dump

 

Whenever the FUV detector high voltage is on, count rate and current

draw information is collected, monitored, and saved to DCE memory. Every

10 msec the detector samples the currents from the HV power supplies

(HVIA, HVIB) and the AUX power supply (AUXI). The last 1000 samples are

saved in memory, along with a histogram of the number of occurrences of

each current value.

 

In the case of a HV transient (known as a "crackle" on FUSE), where one

of these currents exceeds a preset threshold for a persistence time, the

HV will shut down, and the DCE memory will be dumped and examined as

part of the recovery procedure. However, if the current exceeds the

threshold for less than the persistence time (a "mini-crackle" in FUSE

parlance), there is no way to know without dumping DCE memory. By

dumping and examining the histograms regularly, we will be able to

monitor any changes in the rate of "mini-crackles" and thus learn

something about the state of the detector.

 

STIS/CC 11845

 

CCD Dark Monitor Part 2

 

Monitor the darks for the STIS CCD.

 

STIS/CC 11847

 

CCD Bias Monitor-Part 2

 

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,

and 1x1 at gain = 4, to build up high-S/N superbiases and track the

evolution of hot columns.

 

WFC3/IR 11696

 

Infrared Survey of Star Formation Across Cosmic Time

 

We propose to use the unique power of WFC3 slitless spectroscopy to

measure the evolution of cosmic star formation from the end of the

reionization epoch at z>6 to the close of the galaxy- building era at

z~0.3.Pure parallel observations with the grisms have proven to be

efficient for identifying line emission from galaxies across a broad

range of redshifts. The G102 grism on WFC3 was designed to extend this

capability to search for Ly-alpha emission from the first galaxies.

Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will

observe about 40 deep (4-5 orbit) fields with the combination of G102

and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

 

Our primary science goals at the highest redshifts are: (1) Detect Lya

in ~100 galaxies with z>5.6 and measure the evolution of the Lya

luminosity function, independent of of cosmic variance; 2) Determine the

connection between emission line selected and continuum-break selected

galaxies at these high redshifts, and 3) Search for the proposed

signature of neutral hydrogen absorption at re-ionization. At

intermediate redshifts we will (4) Detect more than 1000 galaxies in

Halpha at 0.5<z<1.8 to measure the evolution of the extinction-corrected

star formation density across the peak epoch of star formation. This is

over an order-of-magnitude improvement in the current statistics, from

the NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from

0.5<z<2.2; and (6) Estimate the evolution in reddening and metallicty in

star- forming galaxies and measure the evolution of the Seyfert

population. For hundreds of spectra we will be able to measure one or

even two line pair ratios -- in particular, the Balmer decrement and

[OII]/[OIII] are sensitive to gas reddening and metallicity. As a bonus,

the G102 grism offers the possibility of detecting Lya emission at

z=7-8.8.

 

To identify single-line Lya emitters, we will exploit the wide

0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All

[OII] and [OIII] interlopers detected in G102 will be reliably separated

from true LAEs by the detection of at least one strong line in the G141

spectrum, without the need for any ancillary data. We waive all

proprietary rights to our data and will make high-level data products

available through the ST/ECF.

 

WFC3/IR 11915

 

IR Internal Flat Fields

 

This program is the same as 11433 (SMOV) and depends on the completion

of the IR initial alignment (Program 11425). This version contains three

instances of 37 internal orbits: to be scheduled early, middle, and near

the end of Cycle 17, in order to use the entire 110-orbit allocation.

 

In this test, we will study the stability and structure of the IR

channel flat field images through all filter elements in the WFC3-IR

channel. Flats will be monitored, i.e. to capture any temporal trends in

the flat fields and delta flats produced. High signal observations will

provide a map of the pixel-to-pixel flat field structure, as well as

identify the positions of any dust particles.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UVIS 11714

 

Snapshot Survey for Planetary Nebulae in Local Group Globular Clusters

 

Planetary nebulae (PNe) in globular clusters (GCs) raise a number of

interesting issues related to stellar and galactic evolution. The number

of PNe known in Milky Way GCs, four, is surprisingly low if one assumes

that all stars pass through a PN stage. However, it is likely that the

remnants of stars now evolving in galactic GCs leave the AGB so slowly

that any ejected nebula dissipates long before the star becomes hot

enough to ionize it. Thus there should not be ANY PNe in Milky Way

GCs--but there are four! It has been suggested that these Pne are the

result of mergers of binary stars within GCs, i.e., that they are

descendants of blue stragglers. The frequency of occurrence of PNe in

external galaxies poses more questions, because it shows a range of

almost an order of magnitude.

 

I propose a SNAPshot survey aimed at discovering PNe in the GC systems

of Local Group galaxies outside the Milky Way. These clusters, some of

which may be much younger than their counterparts in our galaxy, might

contain many more PNe than those of our own galaxy. I will use the

standard technique of emission-line and continuum imaging, which easily

discloses PNe. This proposal continues a WFPC2 program started in Cycle

16, but with the more powerful WFC3. As a by-product, the survey will

also produce color-magnitude diagrams for numerous clusters for the

first time, reaching down to the horizontal branch.

 

WFC3/UVIS 11732

 

The Temperature Profiles of Quasar Accretion Disks

 

We can now routinely measure the size of quasar accretion disks using

gravitational microlensing of lensed quasars. At optical wavelengths we

observe a size and scaling with black hole mass roughly consistent with

thin disk theory but the sizes are larger than expected from the

observed optical fluxes. One solution would be to use a flatter

temperature profile, which we can study by measuring the wavelength

dependence of the disk size over the largest possible wavelength

baseline. Thus, to understand the size discrepancy and to probe closer

to the inner edge of the disk we need to extend our measurements to UV

wavelengths, and this can only be done with HST. For example, in the UV

we should see significant changes in the optical/UV size ratio with

black hole mass. We propose monitoring 5 lenses spanning a broad range

of black hole masses with well-sampled ground based light curves,

optical disk size measurements and known GALEX UV fluxes during Cycles

17 and 18 to expand from our current sample of two lenses. We would

obtain 5 observations of each target in each Cycle, similar to our

successful strategy for the first two targets.

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.

 

WFC3/UVIS 11912

 

UVIS Internal Flats

 

This proposal will be used to assess the stability of the flat field

structure for the UVIS detector throughout the 15 months of Cycle 17.

The data will be used to generate on-orbit updates for the delta-flat

field reference files used in the WFC3 calibration pipeline, if

significant changes in the flat structure are seen.