HUBBLE
SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY
REPORT #5127
PERIOD
COVERED: 5am June 28 - 5am June 29, 2010 (DOY 179/09:00z-180/09:00z)
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
12314
- GSAcq(2,1,1) @179/20:48:02z and REAcqs(2,1,1) @179/22:23:59z and
179/23:59:50z failed to RGA Hold due to search radius limit
exceeded on
FGS2. REAcq(2,1,1) @180/01:35:40z was successful.
Observations affected: COS #8-11 Proposal ID#11705, WFC3 #70-77
Proposal
ID#11696, STIS #14-16 Proposal #11847 and WFC3 #78-79 Proposal
#11905
COMPLETED
OPS REQUEST:
18568-1
- LBBIAS Updates for Extended Gyro Guiding Intervals @ 179/21:36z, &
180/00:49z
COMPLETED
OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS
GSAcq
5
4
FGS
REAcq
9
7
OBAD
with Maneuver 4
4
SIGNIFICANT
EVENTS: (None)
OBSERVATIONS
SCHEDULED:
ACS/WFC
11996
CCD
Daily Monitor (Part 3)
This
program comprises basic tests for measuring the read noise and dark
current
of the ACS WFC and for tracking the growth of hot pixels. The
recorded
frames are used to create bias and dark reference images for
science
data reduction and calibration. This program will be executed
four
days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To
facilitate
scheduling, this program is split into three proposals. This
proposal
covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November
2010.
COS/FUV
11895
FUV
Detector Dark Monitor
Monitor
the FUV detector dark rate by taking long science exposures
without
illuminating the detector. The detector dark rate and spatial
distribution
of counts will be compared to pre-launch and SMOV data in
order
to verify the nominal operation of the detector. Variations of
count
rate as a function of orbital position will be analyzed to find
dependence
of dark rate on proximity to the SAA. Dependence of dark rate
as
function of time will also be tracked.
COS/NUV
11705
Physical
Properties of Quasar Outflows: From BALs to Mini-BALs
Accretion
disk outflows are important components of quasar environments.
They
might play a major role in facilitating accretion, regulating star
formation
in the host galaxies and distributing metals to the
surrounding
gas. They reveal themselves most conspicuously via broad
absorption
lines (BALs), but they appear even more frequently in other
guises
such as the weaker and narrower "mini-BALs." How are these
diverse
outflow features related? Are mini-BALs really just "mini"
versions
of the BALs, or do they represent a fundamentally different
type
of outflow, with different degrees of ionization, column densities,
mass
loss rates, physical origins, etc.?
We
propose HST-COS spectroscopy to make the first quantitative
assessment
of the outflow physical conditions across the full range of
weak/narrow
mini-BALs to strong/broad BALs. Our strategy is to measure
key
diagnostic lines (SVI, OVI, CIII, SIV, PV, etc.) at 930A - 1130A
(rest-
frame) in a sample of 7 outflow quasars with known mini-BALs
through
weak BALs. We will then 1) combine the COS data with
ground-based
spectra of the same quasars to include more lines (CIV,
SiIV)
at longer wavelengths, and 2) include in our analysis a nearly
identical
UV/optical dataset obtained previously for a sample of quasars
with
strong BALs. Our study of this combined dataset will be an
essential
next step toward a more global understanding of quasar
outflows.
COS/NUV
11894
NUV
Detector Dark Monitor
The
purpose of this proposal is to measure the NUV detector dark rate by
taking
long science exposures with no light on the detector. The
detector
dark rate and spatial distribution of counts will be compared
to
pre-launch and SMOV data in order to verify the nominal operation of
the
detector. Variations of count rate as a function of orbital position
will
be analyzed to find dependence of dark rate on proximity to the
SAA.
Dependence of dark rate as function of time will also be tracked.
STIS/CC
11845
CCD
Dark Monitor Part 2
Monitor
the darks for the STIS CCD.
STIS/CC
11847
CCD
Bias Monitor-Part 2
Monitor
the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and
1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution
of hot columns.
STIS/CCD
11852
STIS
CCD Spectroscopic Flats C17
The
purpose of this proposal is to obtain pixel-to-pixel lamp flat
fields
for the STIS CCD in spectroscopic mode.
STIS/CCD/FGS
11848
CCD
Read Noise Monitor
This
proposal measures the read noise of all the amplifiers (A, B, C, D)
on
the STIS CCD using pairs of bias frames. Full-frame and binned
observations
are made in both Gain 1 and Gain 4, with binning factors of
1x1,
1x2, 2x1, and 2x2. All exposures are internals. Pairs of visits are
scheduled
monthly for the first four months and then bi-monthly after
that.
WFC3/IR
11696
Infrared
Survey of Star Formation Across Cosmic Time
We
propose to use the unique power of WFC3 slitless spectroscopy to
measure
the evolution of cosmic star formation from the end of the
reionization
epoch at z>6 to the close of the galaxy- building era at
z~0.3.Pure
parallel observations with the grisms have proven to be
efficient
for identifying line emission from galaxies across a broad
range
of redshifts. The G102 grism on WFC3 was designed to extend this
capability
to search for Ly-alpha emission from the first galaxies.
Using
up to 250 orbits of pure parallel WFC3 spectroscopy, we will
observe
about 40 deep (4-5 orbit) fields with the combination of G102
and
G141, and about 20 shallow (2-3 orbit) fields with G141 alone.
Our
primary science goals at the highest redshifts are: (1) Detect Lya
in
~100 galaxies with z>5.6 and measure the evolution of the Lya
luminosity
function, independent of of cosmic variance; 2) Determine the
connection
between emission line selected and continuum-break selected
galaxies
at these high redshifts, and 3) Search for the proposed
signature
of neutral hydrogen absorption at re-ionization. At
intermediate
redshifts we will (4) Detect more than 1000 galaxies in
Halpha
at 0.5<z<1.8 to measure the evolution of the extinction-corrected
star
formation density across the peak epoch of star formation. This is
over
an order-of-magnitude improvement in the current statistics, from
the
NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from
0.5<z<2.2;
and (6) Estimate the evolution in reddening and metallicty in
star-
forming galaxies and measure the evolution of the Seyfert
population.
For hundreds of spectra we will be able to measure one or
even
two line pair ratios -- in particular, the Balmer decrement and
[OII]/[OIII]
are sensitive to gas reddening and metallicity. As a bonus,
the
G102 grism offers the possibility of detecting Lya emission at
z=7-8.8.
To
identify single-line Lya emitters, we will exploit the wide
0.8--1.9um
wavelength coverage of the combined G102+G141 spectra. All
[OII]
and [OIII] interlopers detected in G102 will be reliably separated
from
true LAEs by the detection of at least one strong line in the G141
spectrum,
without the need for any ancillary data. We waive all
proprietary
rights to our data and will make high-level data products
available
through the ST/ECF.
WFC3/UV
12243
Determining
the Size and Shape of Dwarf Planet Haumea from a Mutual
Event
The
history of Haumea is closely intertwined with several unanswered
questions
relating to the formation and evolution of the outer solar
system.
Understanding Haumea and its satellites gives us unique insights
on
the physics of KBO collisions, tides, surfaces, and interiors. Yet,
the
most important physical properties of this dwarf planet, its density
and
shape, remain only weakly constrained by degenerate light curve
inversions.
The existence of mutual events between Haumea and its inner
satellite,
Namaka, provide a rare opportunity to measure Haumea's size,
shape,
density, albedo, and spin orientation with HST photometry. These
observations
also constrain the size of Namaka, the orbits of both
satellites,
and, through resolved photometry, the totally unexpected
rapid
rotation of the outer satellite, Hi'iaka. After extensive attempts
at
ground-based observations, it is clear that only HST photometry is
capable
of securely observing and characterizing a Haumea-Namaka mutual
event.
The proposed observations will observe the ~5-hour transit and
shadowing
of Haumea by Namaka on June 28, 2010 with high signal-to-noise
using
straightforward photometric observations with WFC3.
WFC3/UVIS
11905
WFC3
UVIS CCD Daily Monitor
The
behavior of the WFC3 UVIS CCD will be monitored daily with a set of
full-frame,
four-amp bias and dark frames. A smaller set of 2Kx4K
subarray
biases are acquired at less frequent intervals throughout the
cycle
to support subarray science observations. The internals from this
proposal,
along with those from the anneal procedure (Proposal 11909),
will
be used to generate the necessary superbias and superdark reference
files
for the calibration pipeline (CDBS).
WFC3/UVIS/IR
11662
Improving
the Radius-Luminosity Relationship for Broad-Lined AGNs with a
New
Reverberation Sample
The
radius-luminosity (R-L) relationship is currently the fundamental
basis
for all techniques used to estimate black hole masses in AGNs, in
both
the nearby and distant universe. However, the current R-L
relationship
is based on 34 objects that cover a limited range in black
hole
mass and luminosity. To improve our understanding of black hole
growth
and evolution, the R-L relationship must be extended to cover a
broader
range of black hole masses using the technique known as
reverberation
mapping. To this end, we have been awarded an
unprecedented
64 nights on the Lick Observatory 3-m telescope between
March
24 and May 31, 2008, to spectroscopically monitor 12 AGNs in order
to
measure their black hole masses. To properly determine the
luminosities
of these 12 AGNs, we must correct them for their
host-galaxy
starlight contributions using high-resolution images.
Previous
work by Bentz et al. (2006) has shown that the starlight
correction
to AGN luminosity measurements is an essential component to
interpreting
the R-L relationship. The correction will be substantial
for
each of the 12 sources we will monitor, as the AGNs are relatively
faint
and embedded in nearby, bright galaxies. Starlight corrections are
not
possible with ground-based images, as the PSF and bulge
contributions
become indistinguishable under typical seeing conditions,
and
adaptive optics are not yet operational in the spectral range where
the
corrections are needed. In addition, spectral decompositions are
very
model-dependent and are limited by the degree of accuracy to which
we
understand emission processes and stellar populations in galaxies.
Without
correcting for starlight, we will be unable to apply the results
of
our Spring 2008 campaign to the body of knowledge from previous
reverberation
mapping work. Therefore, we propose to obtain high
resolution,
high dynamic range images of the host galaxies of the 12
AGNs
in our ground-based monitoring sample, as well as one white dwarf
which
will be used as a PSF model.