HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5136

 

PERIOD COVERED: 5am July 12 - 5am July 13, 2010 (DOY 193/09:00z-194/09:00z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED SUCCESSFUL

FGS GSAcq               9              9

FGS REAcq               7              7

OBAD with Maneuver 8              8

 

SIGNIFICANT EVENTS: (None)

 

OBSERVATIONS SCHEDULED:

 

ACS/WFC 11996

 

CCD Daily Monitor (Part 3)

 

This program comprises basic tests for measuring the read noise and dark

current of the ACS WFC and for tracking the growth of hot pixels. The

recorded frames are used to create bias and dark reference images for

science data reduction and calibration. This program will be executed

four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To

facilitate scheduling, this program is split into three proposals. This

proposal covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November

2010.

 

COS/FUV 11699

 

On the Evolutionary Status of Extremely Hot Helium Stars - are the O(He)

Stars Successors of the R CrB Stars?

 

We propose UV spectroscopy of the four unique post-AGB stars of spectral

type O(He) in order to understand the origin of their peculiar surface

abundances. These stars are the only known amongst the hottest post-AGB

stars (effective temperatures > 100, 000 K) whose atmospheres are

composed of almost pure helium. This chemistry markedly differs from

that of the hydrogen-deficient post-AGB evolutionary sequence with

objects which have carbon dominated atmospheres (PG1159 stars and

Wolf-Rayet central stars).

 

While PG1159 and Wolf-Rayet stars are the result of a late helium-shell

flash, this scenario cannot explain the O(He) stars. Instead, they are

possibly double-degenerate mergers. We speculate that the four O(He)

stars represent evolved RCrB stars, which also have helium-dominated

atmospheres. We aim to determine the C, N, O, and Si abundances

precisely, in order to proof this evolutionary link.

 

COS/FUV 11895

 

FUV Detector Dark Monitor

 

Monitor the FUV detector dark rate by taking long science exposures

without illuminating the detector. The detector dark rate and spatial

distribution of counts will be compared to pre-launch and SMOV data in

order to verify the nominal operation of the detector. Variations of

count rate as a function of orbital position will be analyzed to find

dependence of dark rate on proximity to the SAA. Dependence of dark rate

as function of time will also be tracked.

 

COS/NUV 11894

 

NUV Detector Dark Monitor

 

The purpose of this proposal is to measure the NUV detector dark rate by

taking long science exposures with no light on the detector. The

detector dark rate and spatial distribution of counts will be compared

to pre-launch and SMOV data in order to verify the nominal operation of

the detector. Variations of count rate as a function of orbital position

will be analyzed to find dependence of dark rate on proximity to the

SAA. Dependence of dark rate as function of time will also be tracked.

 

STIS/CC 11845

 

CCD Dark Monitor Part 2

 

Monitor the darks for the STIS CCD.

 

STIS/CC 11847

 

CCD Bias Monitor-Part 2

 

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,

and 1x1 at gain = 4, to build up high-S/N superbiases and track the

evolution of hot columns.

 

STIS/CC/MA 11576

 

Physical Parameters of the Upper Atmosphere of the Extrasolar Planet

HD209458b

 

One of the most studied extrasolar planet, HD209458b, has revealed both

its lower and upper atmosphere thanks to HST and Spitzer observatories.

 

Through transmission spectroscopy technique, several atmospheric species

were detected: NaI, HI, OI and CII. Using STIS archived transit

absorption spectrum from 3000 to 8000 Angstrom, we obtained detailed

constraints on the vertical profile of temperature, pressure and

abundances (Sing et al 2008a, 2008b, Lecavelier et al. 2008b).

 

By observing in the NUV, from 2300 to 3100 Angstrom, we expect to obtain

new constraints on the physical conditions and the chemical composition

of the upper atmosphere: temperature/pressure profile up to very high in

the atmosphere, abundance and condensation altitudes of new species, and

new insight in the atmospheric escape and ionization state at the upper

levels. The observation of four HD209458b transits with a single E230M

setting will give access to many NUV atomic lines addressing these

issues. The proposed observations will probe, for the first time, in

details the atmosphere of a hot Jupiter, thus bench marking follow up

studies.

 

STIS/CCD 11849

 

STIS CCD Hot Pixel Annealing

 

This purpose of this activity is to repair radiation induced hot pixel

damage to the STIS CCD by warming the CCD to the ambient instrument

temperature and annealing radiation-damaged pixels.

 

Radiation damage creates hot pixels in the STIS CCD Detector. Many of

these hot pixels can be repaired by warming the CCD from its normal

operating temperature near -83 deg. C to the ambient instrument

temperature (~ +5 deg. C) for several hours. The number of hot pixels

repaired is a function of annealing temperature. The effectiveness of

the CCD hot pixel annealing process is assessed by measuring the dark

current behavior before and after annealing and by searching for any

window contamination effects.

 

STIS/CCD 11853

 

Cycle 17 STIS CCD Imaging Flats

 

This program periodically monitors the STIS CCD imaging mode flat fields

by using the tungsten lamps.

 

WFC3/IR 11631

 

Binary Brown Dwarfs and the L/T Transition

 

Brown dwarfs traverse spectral types M, L and T as their atmospheric

structure evolves and they cool into oblivion. This SNAPSHOT program

will obtain WFC3-IR images of 45 nearby late-L and early-T dwarfs to

investigate the nature of the L/T transition. Recent analyses have

suggested that a substantial proportion of late-L and early-T dwarfs are

binaries, comprised of an L dwarf primary and T dwarf secondary. WFC3-IR

observations will let us quantify this suggestion by expanding coverage

to a much larger sample, and permitting comparison of the L/T binary

fraction against ‘normal’ ultracool dwarfs. Only eight L/T binaries are

currently known, including several that are poorly resolved: we

anticipate at least doubling the number of resolved systems. The

photometric characteristics of additional resolved systems will be

crucial to constraining theoretical models of these late-type ultracool

dwarfs. Finally, our data will also be eminently suited to searching for

extremely low luminosity companions, potentially even reaching the Y

dwarf regime.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UV/ACS/WFC/IR 12057

 

A Panchromatic Hubble Andromeda Treasury - I

 

We propose to image the north east quadrant of M31 to deep limits in the

UV, optical, and near-IR. HST imaging should resolve the galaxy into

more than 100 million stars, all with common distances and foreground

extinctions. UV through NIR stellar photometry (F275W, F336W with

WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with

WFC3/NIR) will provide effective temperatures for a wide range of

spectral types, while simultaneously mapping M31's extinction. Our

central science drivers are to: understand high-mass variations in the

stellar IMF as a function of SFR intensity and metallicity; capture the

spatially-resolved star formation history of M31; study a vast sample of

stellar clusters with a range of ages and metallicities. These are

central to understanding stellar evolution and clustered star formation;

constraining ISM energetics; and understanding the counterparts and

environments of transient objects (novae, SNe, variable stars, x-ray

sources, etc.). As its legacy, this survey adds M31 to the Milky Way and

Magellanic Clouds as a fundamental calibrator of stellar evolution and

star-formation processes for understanding the stellar populations of

distant galaxies. Effective exposure times are 977s in F275W, 1368s in

F336W, 4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in

F160W, including short exposures to avoid saturation of bright sources.

These depths will produce photon-limited images in the UV. Images will

be crowding-limited in the optical and NIR, but will reach below the red

clump at all radii. The images will reach the Nyquist sampling limit in

F160W, F475W, and F814W.

 

WFC3/UVIS 11595

 

Turning Out the Light: A WFC3 Program to Image z>2 Damped Lyman Alpha

Systems

 

We propose to directly image the star-forming regions of z>2 damped Lya

systems (DLAs) using the WFC3/UVIS camera on the Hubble Space Telescope.

In contrast to all previous attempts to detect the galaxies giving rise

to high redshift DLAs, we will use a novel technique that completely

removes the glare of the background quasar. Specifically, we will target

quasar sightlines with multiple DLAs and use the higher redshift DLA as

a ``blocking filter'' (via Lyman limit absorption) to eliminate all FUV

emission from the quasar. This will allow us to carry out a deep search

for FUV emission from the lower redshift DLA, shortward of the Lyman

limit of the higher redshift absorber. The unique filter set and high

spatial resolution afforded by WFC3/UVIS will then enable us to directly

image the lower redshift DLA and thus estimate its size, star- formation

rate and impact parameter from the QSO sightline. We propose to observe

a sample of 20 sightlines, selected primarily from the SDSS database,

requiring a total of 40 HST orbits. The observations will allow us to

determine the first FUV luminosity function of high redshift DLA

galaxies and to correlate the DLA galaxy properties with the ISM

characteristics inferred from standard absorption-line analysis to

significantly improve our understanding of the general DLA population.

 

WFC3/UVIS 11697

 

Proper Motion Survey of Classical and SDSS Local Group Dwarf Galaxies

 

Using the superior resolution of HST, we propose to continue our proper

motion survey of Galactic dwarf galaxies. The target galaxies include

one classical dwarf, Leo II, and six that were recently identified in

the Sloan Digital Sky Survey data: Bootes I, Canes Venatici I, Canes

Venatici II, Coma Berenices, Leo IV, and Ursa Major II. We will observe

a total of 16 fields, each centered on a spectroscopically-confirmed

QSO. Using QSOs as standards of rest in measuring absolute proper

motions has proven to be the most accurate and most efficient method.

HST is our only option to quickly determine the space motions of the

SDSS dwarfs because suitable ground-based imaging is only a few years

old and such data need several decades to produce a proper motion. The

two most distant galaxies in our sample will require time baselines of

four years to achieve our goal of a 30-50 km/s uncertainty in the

tangential velocity; given this and the finite lifetime of HST, it is

imperative that first-epoch observations be taken in this cycle. The

SDSS dwarfs have dramatically lower surface brightnesses and

luminosities than the classical dwarfs. Proper motions are crucial for

determining orbits of the galaxies and knowing the orbits will allow us

to test theories for the formation and evolution of these galaxies and,

more generally, for the formation of the Local Group.

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).