HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5144

 

PERIOD COVERED: 5am July 22 - 5am July 23, 2010 (DOY 203/09:00z-204/09:00z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS: (None)

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                         SCHEDULED   SUCCESSFUL

FGS GSAcq                    6           6                    

FGS REAcq                    9           9                

OBAD with Maneuver     6           6                

 

SIGNIFICANT EVENTS: (None)

 

 

OBSERVATIONS SCHEDULED:

 

COS/NUV 11894

 

NUV Detector Dark Monitor

 

The purpose of this proposal is to measure the NUV detector dark rate by

taking long science exposures with no light on the detector. The

detector dark rate and spatial distribution of counts will be compared

to pre-launch and SMOV data in order to verify the nominal operation of

the detector. Variations of count rate as a function of orbital position

will be analyzed to find dependence of dark rate on proximity to the

SAA. Dependence of dark rate as function of time will also be tracked.

 

COS/NUV/FUV 11728

 

The Impact of Starbursts on the Gaseous Halos of Galaxies

 

Perhaps the most important (yet uncertain) aspects of galaxy evolution

are the processes by which galaxies accrete gas and by which the

resulting star formation and black hole growth affects this accreting

gas. It is believed that both the form of the accretion and the nature

of the feedback change as a function of the galaxy mass. At low mass the

gas comes in cold and the feedback is provided by massive stars. At high

mass, the gas comes in hot, and the feedback is from an AGN. The

changeover occurs near the mass where the galaxy population transitions

from star-forming galaxies to red and dead ones. The population of red

and dead galaxies is building with cosmic time, and it is believed that

feedback plays an important role in this process: shutting down star

formation by heating and/or expelling the reservoir of cold halo gas. To

investigate these ideas, we propose to use COS far-UV spectra of

background QSOs to measure the properties of the halo gas in a sample of

galaxies near the transition mass that have undergone starbursts within

the past 100 Myr to 1 Gyr. The galactic wind associated with the

starburst is predicted to have affected the properties of the gaseous

halo. To test this, we will compare the properties of the halos of the

post-starburst galaxies to those of a control sample of galaxies matched

in mass and QSO impact parameter. Do the halos of the post-starburst

galaxies show a higher incidence rate of Ly-Alpha and metal

absorption-lines? Are the kinematics of the halo gas more disturbed in

the post-starbursts? Has the wind affected the ionization state and/or

the metallicity of the halo? These data will provide fresh new insights

into the role of feedback from massive stars on the evolution of

galaxies, and may also offer clues about the properties of the QSO metal

absorption-line systems at high-redshift .

 

STIS/CC 11845

 

CCD Dark Monitor Part 2

 

Monitor the darks for the STIS CCD.

 

STIS/CC 11847

 

CCD Bias Monitor-Part 2

 

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,

and 1x1 at gain = 4, to build up high-S/N superbiases and track the

evolution of hot columns.

 

STIS/MA1/MA2 11857

 

STIS Cycle 17 MAMA Dark Monitor

 

This proposal monitors the behavior of the dark current in each of the

MAMA detectors.

 

The basic monitor takes two 1380s ACCUM darks each week with each

detector. However, starting Oct 5, pairs are only included for weeks

that the LRP has external MAMA observations planned. The weekly pairs of

exposures for each detector are linked so that they are taken at

opposite ends of the same SAA free interval. This pairing of exposures

will make it easier to separate long and short term temporal variability

from temperature dependent changes.

 

For both detectors, additional blocks of exposures are taken once every

six months. These are groups of five 1314s FUV-MAMA Time-Tag darks or

five 3x315s NUV ACCUM darks distributed over a single SAA-free interval.

This will give more information on the brightness of the FUV MAMA dark

current as a function of the amount of time that the HV has been on, and

for the NUV MAMA will give a better measure of the short term

temperature dependence.

 

WFC3/ACS/UVIS 11613

 

GHOSTS: Stellar Outskirts of Massive Spiral Galaxies

 

We propose to continue our highly successful GHOSTS HST survey of the

resolved stellar populations of nearby, massive disk galaxies using

SNAPs. These observations provide star counts and color-magnitude

diagrams 2-3 magnitudes below the tip of the Red Giant Branch of the

outer disk and halo of each galaxy. We will measure the metallicity

distribution functions and stellar density profiles from star counts

down to very low average surface brightnesses, equivalent to ~32 V-mag

per square arcsec.

 

This proposal will substantially improve our unique sampling of galaxy

outskirts. Our targets cover a range in galaxy mass, luminosity,

inclination, and morphology. As a function of these galaxy properties,

this survey provides: - the most extensive, systematic measurement of

radial light profiles and axial ratios of the diffuse stellar halos and

outer disks of spiral galaxies; - a comprehensive analysis of halo

metallicity distributions as function of galaxy type and position within

the galaxy; - an unprecedented study of the stellar metallicity and age

distribution in the outer disk regions where the disk truncations occur;

- the first comparative study of globular clusters and their field

stellar populations.

 

We will use these fossil records of the galaxy assembly process to test

halo formation models within the hierarchical galaxy formation scheme.

 

WFC3/IR 11696

 

Infrared Survey of Star Formation Across Cosmic Time

 

We propose to use the unique power of WFC3 slitless spectroscopy to

measure the evolution of cosmic star formation from the end of the

reionization epoch at z>6 to the close of the galaxy- building era at

z~0.3.Pure parallel observations with the grisms have proven to be

efficient for identifying line emission from galaxies across a broad

range of redshifts. The G102 grism on WFC3 was designed to extend this

capability to search for Ly-alpha emission from the first galaxies.

Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will

observe about 40 deep (4-5 orbit) fields with the combination of G102

and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

 

Our primary science goals at the highest redshifts are: (1) Detect Lya

in ~100 galaxies with z>5.6 and measure the evolution of the Lya

luminosity function, independent of of cosmic variance; 2) Determine the

connection between emission line selected and continuum-break selected

galaxies at these high redshifts, and 3) Search for the proposed

signature of neutral hydrogen absorption at re-ionization. At

intermediate redshifts we will (4) Detect more than 1000 galaxies in

Halpha at 0.5<z<1.8 to measure the evolution of the extinction-corrected

star formation density across the peak epoch of star formation. This is

over an order-of-magnitude improvement in the current statistics, from

the NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from

0.5<z<2.2; and (6) Estimate the evolution in reddening and metallicty in

star- forming galaxies and measure the evolution of the Seyfert

population. For hundreds of spectra we will be able to measure one or

even two line pair ratios -- in particular, the Balmer decrement and

[OII]/[OIII] are sensitive to gas reddening and metallicity. As a bonus,

the G102 grism offers the possibility of detecting Lya emission at

z=7-8.8.

 

To identify single-line Lya emitters, we will exploit the wide

0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All

[OII] and [OIII] interlopers detected in G102 will be reliably separated

from true LAEs by the detection of at least one strong line in the G141

spectrum, without the need for any ancillary data. We waive all

proprietary rights to our data and will make high-level data products

available through the ST/ECF.

 

WFC3/IR 11915

 

IR Internal Flat Fields

 

This program is the same as 11433 (SMOV) and depends on the completion

of the IR initial alignment (Program 11425). This version contains three

instances of 37 internal orbits: to be scheduled early, middle, and near

the end of Cycle 17, in order to use the entire 110-orbit allocation.

 

In this test, we will study the stability and structure of the IR

channel flat field images through all filter elements in the WFC3-IR

channel. Flats will be monitored, i.e. to capture any temporal trends in

the flat fields and delta flats produced. High signal observations will

provide a map of the pixel-to-pixel flat field structure, as well as

identify the positions of any dust particles.

 

WFC3/IR/S/C 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UV/ACS/WFC/IR 12058

 

A Panchromatic Hubble Andromeda Treasury - I

 

We propose to image the north east quadrant of M31 to deep limits in the

UV, optical, and near-IR. HST imaging should resolve the galaxy into

more than 100 million stars, all with common distances and foreground

extinctions. UV through NIR stellar photometry (F275W, F336W with

WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with

WFC3/NIR) will provide effective temperatures for a wide range of

spectral types, while simultaneously mapping M31's extinction. Our

central science drivers are to: understand high-mass variations in the

stellar IMF as a function of SFR intensity and metallicity; capture the

spatially-resolved star formation history of M31; study a vast sample of

stellar clusters with a range of ages and metallicities. These are

central to understanding stellar evolution and clustered star formation;

constraining ISM energetics; and understanding the counterparts and

environments of transient objects (novae, SNe, variable stars, x-ray

sources, etc.). As its legacy, this survey adds M31 to the Milky Way and

Magellanic Clouds as a fundamental calibrator of stellar evolution and

star-formation processes for understanding the stellar populations of

distant galaxies. Effective exposure times are 977s in F275W, 1368s in

F336W, 4040s in F475W, 4042s in F814W, 699s in F110W, and 1796s in

F160W, including short exposures to avoid saturation of bright sources.

These depths will produce photon-limited images in the UV. Images will

be crowding-limited in the optical and NIR, but will reach below the red

clump at all radii. The images will reach the Nyquist sampling limit in

F160W, F475W, and F814W.

 

WFC3/UVIS 11643

 

A Timeline for Early-Type Galaxy Formation: Mapping the Evolution of

Star Formation, Globular Clusters, Dust, and Black Holes

 

While considerable effort has been devoted to statistical studies of the

origin of the red sequence of galaxies, there has been relatively little

direct exploration of galaxies transforming from late to early types.

Such galaxies are identified by their post-starburst spectra, bulge-

dominated, tidally-disturbed morphologies, and current lack of gas. We

are constructing the first detailed timeline of their evolution onto the

red sequence, pinpointing when star formation ends, nuclear activity

ceases, globular clusters form, and the bulk of the merging progenitors'

dust disappears. Here we propose to obtain HST and Chandra imaging of

nine galaxies, whose wide range of post-starburst ages we have precisely

dated with a new UV-optical technique and for which we were awarded

Spitzer time. We will address 1) whether the black hole-bulge mass

relation arises from nuclear feedback, 2) whether the bimodality of

globular cluster colors is due to young clusters produced in galaxy

mergers, and 3) what happens to the dust when late types merge to form

an early type.

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS 11907

 

UVIS Cycle 17 Contamination Monitor

 

The UV throughput of WFC3 during Cycle 17 is monitored via weekly

standard star observations in a subset of key filters covering 200-600nm

and F606W, F814W as controls on the red end. The data will provide a

measure of throughput levels as a function of time and wavelength,

allowing for detection of the presence of possible contaminants.

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.

 

 

-Lynn                   cid:image001.jpg@01CA472D.CCA694D0

NASA office: 301-286-2876

__________________________________________________________
Lynn F. Bassford
Hubble Space Telescope
CHAMP Mission Operations Manager
CHAMP Flight Operations Team Manager
Lockheed Martin Mission Services (LMMS)

"...Hubble is the most significant science instrument of all time in terms of its productivity..."     Scott Altman @12:45pm 5/21/9 STS-125 Senate Subcommittee Hearing