HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5161

 

PERIOD COVERED: 5am August 16 - 5am August 17, 2010 (DOY 228/09:00z-229/09:00z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

12355 - GSAcq(1,2,1) at 228/11:51:32z, REAcq(1,2,1) at 228/13:04:36z, 228/14:44:47z

           and 228/16:23:51z all acquired fine lock backup on FGS 1 following scan step

           limit exceeded.

 

           Observations possibly affected: WFC3 8-27, proposal ID#11671.

 

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                      SCHEDULED      SUCCESSFUL

FGS GSAcq               5                   5               

FGS REAcq               9                   9                 

OBAD with Maneuver 3                   3                

 

SIGNIFICANT EVENTS: (None)

 

 

OBSERVATIONS SCHEDULED:

 

ACS/WFC 11996

 

CCD Daily Monitor (Part 3)

 

This program comprises basic tests for measuring the read noise and dark

current of the ACS WFC and for tracking the growth of hot pixels. The

recorded frames are used to create bias and dark reference images for

science data reduction and calibration. This program will be executed

four days per week (Mon, Wed, Fri, Sun) for the duration of Cycle 17. To

facilitate scheduling, this program is split into three proposals. This

proposal covers 308 orbits (19.25 weeks) from 21 June 2010 to 1 November

2010.

 

COS/FUV 11895

 

FUV Detector Dark Monitor

 

Monitor the FUV detector dark rate by taking long science exposures

without illuminating the detector. The detector dark rate and spatial

distribution of counts will be compared to pre-launch and SMOV data in

order to verify the nominal operation of the detector. Variations of

count rate as a function of orbital position will be analyzed to find

dependence of dark rate on proximity to the SAA. Dependence of dark rate

as function of time will also be tracked.

 

COS/NUV 11900

 

NUV Internal/External Wavelength Scale Monitor

 

This program monitors the offsets between the wavelength scale set by

the internal wavecal versus that defined by absorption lines in external

targets. This is accomplished by observing two external radial velocity

standard targets: HD187691 with G225M and G285M and HD6655 with G285M

and G230L. The two standard targets have little flux in the wavelength

range covered by G185M and so Feige 48 (sdO) is observed with this

grating. Both Feige 48 and HD6655 are also observed in SMOV. The

cenwaves observed in this program are a subset of the ones used during

Cycle 17. Observing all cenwaves would require a considerably larger

number of orbits. Constraints on scheduling of each target are placed so

that each target is observed once every ~2-3 months. Observing the three

targets every month would also require a considerably larger number of

orbits.

 

COS/NUV/FUV 11741

 

Probing Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey

for O VI, Ne VIII, Mg X, and Si XII Absorption Systems

 

Currently we can only account for half of the baryons (or less) expected

to be found in the nearby universe based on D/H and CMB observations.

This "missing baryons problem" is one of the highest-priority challenges

in observational extragalatic astronomy. Cosmological simulations

suggest that the baryons are hidden in low-density, shock-heated

intergalactic gas in the log T = 5 - 7 range, but intensive UV and X-ray

surveys using O VI, O VII, and O VIII absorption lines have not yet

confirmed this prediction. We propose to use COS to carry out a

sensitive survey for Ne VIII and Mg X absorption in the spectra of nine

QSOs at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also

search for Si XII. This survey will provide more robust constraints on

the quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3,

and the data will provide rich constraints on the metal enrichment,

physical conditions, and nature of a wide variety of QSO absorbers in

addition to the warm-hot systems. By comparing the results to other

surveys at lower redshifts (with STIS, FUSE, and from the COS GTO

programs), the project will also enable the first study of how these

absorbers evolve with redshift at z < 1. By combining the program with

follow-up galaxy redshift surveys, we will also push the study of

galaxy-absorber relationships to higher redshifts, with an emphasis on

the distribution of the WHIM with respect to the large-scale matter

distribution of the universe.

 

STIS/CCD/MA 11668

 

Cosmo-chronometry and Elemental Abundance Distribution of the Ancient

Star HE1523-0901

 

We propose to obtain near-UV HST/STIS spectroscopy of the extremely

metal-poor, highly r-process-enhanced halo star HE 1523-0901, in order

to produce the most complete abundance distribution of the heaviest

stable elements, including platinum, osmium, and lead. These HST

abundance data will then be used to estimate the initial abundances of

the long-lived radioactive elements thorium and uranium, and by

comparison with their observed abundances, enable an accurate age

determination of this ancient star. The use of radioactive chronometers

in stars provides an independent lower limit on the age of the Galaxy,

which can be compared with alternative limits set by globular clusters

and by analysis from WMAP. Our proposed observations of HE1523-0901 will

also provide significant new information about the early chemical

history of the Galaxy, specifically, the nature of the first generations

of stars and the types of nucleosynthetic processes that occurred at the

onset of Galactic chemical evolution.

 

STIS/CCD 11721

 

Verifying the Utility of Type Ia Supernovae as Cosmological Probes:

Evolution and Dispersion in the Ultraviolet Spectra

 

The study of distant type Ia supernova (SNe Ia) offers the most

practical and immediate discriminator between popular models of dark

energy. Yet fundamental questions remain over possible

redshift-dependent trends in their observed and intrinsic properties.

High-quality Keck spectroscopy of a representative sample of 36

intermediate redshift SNe Ia has revealed a surprising, and unexplained,

diversity in their rest-frame UV fluxes. One possible explanation is

hitherto undiscovered variations in the progenitor metallicity.

Unfortunately, this result cannot be compared to local UV data as only

two representative SNe Ia have been studied near maximum light. Taking

advantage of two new `rolling searches' and the restoration of STIS, we

propose a non-disruptive TOO campaign to create an equivalent comparison

local sample. This will allow us to address possible evolution in the

mean UV spectrum and its diversity, an essential precursor to the study

of SNe beyond z~1.

 

STIS/CCD 11845

 

CCD Dark Monitor Part 2

 

Monitor the darks for the STIS CCD.

 

STIS/CCD 11847

 

CCD Bias Monitor-Part 2

 

Monitor the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,

and 1x1 at gain = 4, to build up high-S/N superbiases and track the

evolution of hot columns.

 

WFC3/ACS/IR 11563

 

Galaxies at z~7-10 in the Reionization Epoch: Luminosity Functions to

<0.2L* from Deep IR Imaging of the HUDF and HUDF05 Fields

 

The first generations of galaxies were assembled around redshifts

z~7-10+, just 500-800 Myr after recombination, in the heart of the

reionization of the universe. We know very little about galaxies in this

period. Despite great effort with HST and other telescopes, less than

~15 galaxies have been reliably detected so far at z>7, contrasting with

the ~1000 galaxies detected to date at z~6, just 200-400 Myr later, near

the end of the reionization epoch. WFC3 IR can dramatically change this

situation, enabling derivation of the galaxy luminosity function and its

shape at z~7-8 to well below L*, measurement of the UV luminosity

density at z~7-8 and z~8-9, and estimates of the contribution of

galaxies to reionization at these epochs, as well as characterization of

their properties (sizes, structure, colors). A quantitative leap in our

understanding of early galaxies, and the timescales of their buildup,

requires a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can

achieve this with 192 WFC3 IR orbits on three disjoint fields

(minimizing cosmic variance): the HUDF and the two nearby deep fields of

the HUDF05. Our program uses three WFC3 IR filters, and leverages over

600 orbits of existing ACS data, to identify, with low contamination, a

large sample of over 100 objects at z~7-8, a very useful sample of ~23

at z~8-9, and limits at z~10. By careful placement of the WFC3 IR and

parallel ACS pointings, we also enhance the optical ACS imaging on the

HUDF and a HUDF05 field. We stress (1) the need to go deep, which is

paramount to define L*, the shape, and the slope alpha of the luminosity

function (LF) at these high redshifts; and (2) the far superior

performance of our strategy, compared with the use of strong lensing

clusters, in detecting significant samples of faint z~7-8 galaxies to

derive their luminosity function and UV ionizing flux. Our recent z~7.4

NICMOS results show that wide-area IR surveys, even of GOODS-like depth,

simply do not reach faint enough at z~7-9 to meet the LF and UV flux

objectives. In the spirit of the HDF and the HUDF, we will waive any

proprietary period, and will also deliver the reduced data to STScI. The

proposed data will provide a Legacy resource of great value for a wide

range of archival science investigations of galaxies at redshifts z~2-9.

The data are likely to remain the deepest IR/optical images until JWST

is launched, and will provide sources for spectroscopic follow up by

JWST, ALMA and EVLA.

 

WFC3/IR 11671

 

Kinematic Reconstruction of the Origin and IMF of the Massive Young

Clusters at the Galactic Center

 

We propose to exploit the wide field capabilities of Wide Field Camera 3

to study star formation at the Galactic center. By studying young stars

located in the most physically extreme region of our Galaxy, we can test

star formation theories, which suggest that such environments should

favor high mass stars and, in extreme cases, should suppress star

formation entirely. Specifically, we will measure the proper motions and

photometry of stars over the full extent of the three massive young

clusters that have been identified at the Galactic Center (Arches,

Quintuplet, and the Young Nuclear Star Cluster). These observations are

a factor of ?2000 more efficient than what can be done with ground-based

adaptive optics. Our goals are two-fold. First, we hope to establish the

initial sites of star formation in order to obtain an accurate estimate

of the conditions that led to the stellar populations within these

clusters. Answering this question for the Young Nuclear Star Cluster is

particularly important as it establishes whether or not star formation

can indeed proceed within 0.1 pc of our Galaxy's supermassive black

hole. Second, we will measure the IMF in the Arches and Quintuplet,

where dynamical evolution is less severe, using proper motions to

determine membership and to reveal the tidal radius. Probing how the

properties of the emergent stellar populations within our Galaxy may be

affected by the physical environment in which they arise is an important

first step to understanding how they might vary as a function of cosmic

time and thereby affect our models of galaxy formation and evolution.

 

WFC3/IR 11696

 

Infrared Survey of Star Formation Across Cosmic Time

 

We propose to use the unique power of WFC3 slitless spectroscopy to

measure the evolution of cosmic star formation from the end of the

reionization epoch at z>6 to the close of the galaxy- building era at

z~0.3.Pure parallel observations with the grisms have proven to be

efficient for identifying line emission from galaxies across a broad

range of redshifts. The G102 grism on WFC3 was designed to extend this

capability to search for Ly-alpha emission from the first galaxies.

Using up to 250 orbits of pure parallel WFC3 spectroscopy, we will

observe about 40 deep (4-5 orbit) fields with the combination of G102

and G141, and about 20 shallow (2-3 orbit) fields with G141 alone.

 

Our primary science goals at the highest redshifts are: (1) Detect Lya

in ~100 galaxies with z>5.6 and measure the evolution of the Lya

luminosity function, independent of cosmic variance; 2) Determine the

connection between emission line selected and continuum-break selected

galaxies at these high redshifts, and 3) Search for the proposed

signature of neutral hydrogen absorption at re-ionization. At

intermediate redshifts we will (4) Detect more than 1000 galaxies in

Halpha at 0.5<z<1.8 to measure the evolution of the extinction-corrected

star formation density across the peak epoch of star formation. This is

over an order-of-magnitude improvement in the current statistics, from

the NICMOS Parallel grism survey. (5) Trace ``cosmic downsizing" from

0.5<z<2.2; and (6) Estimate the evolution in reddening and metallicty in

star- forming galaxies and measure the evolution of the Seyfert

population. For hundreds of spectra we will be able to measure one or

even two line pair ratios -- in particular, the Balmer decrement and

[OII]/[OIII] are sensitive to gas reddening and metallicity. As a bonus,

the G102 grism offers the possibility of detecting Lya emission at

z=7-8.8.

 

To identify single-line Lya emitters, we will exploit the wide

0.8--1.9um wavelength coverage of the combined G102+G141 spectra. All

[OII] and [OIII] interlopers detected in G102 will be reliably separated

from true LAEs by the detection of at least one strong line in the G141

spectrum, without the need for any ancillary data. We waive all

proprietary rights to our data and will make high-level data products

available through the ST/ECF.

 

WFC3/IR/S/CCD 11929

 

IR Dark Current Monitor

 

Analyses of ground test data showed that dark current signals are more

reliably removed from science data using darks taken with the same

exposure sequences as the science data, than with a single dark current

image scaled by desired exposure time. Therefore, dark current images

must be collected using all sample sequences that will be used in

science observations. These observations will be used to monitor changes

in the dark current of the WFC3-IR channel on a day-to-day basis, and to

build calibration dark current ramps for each of the sample sequences to

be used by Gos in Cycle 17. For each sample sequence/array size

combination, a median ramp will be created and delivered to the

calibration database system (CDBS).

 

WFC3/UVIS 11905

 

WFC3 UVIS CCD Daily Monitor

 

The behavior of the WFC3 UVIS CCD will be monitored daily with a set of

full-frame, four-amp bias and dark frames. A smaller set of 2Kx4K

subarray biases are acquired at less frequent intervals throughout the

cycle to support subarray science observations. The internals from this

proposal, along with those from the anneal procedure (Proposal 11909),

will be used to generate the necessary superbias and superdark reference

files for the calibration pipeline (CDBS).

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.