HUBBLE
SPACE TELESCOPE - Continuing to Collect World Class Science
DAILY
REPORT #5181
PERIOD
COVERED: 5am September 14 - 5am September 15, 2010 (DOY 257/09:00z-258/09:00z)
FLIGHT
OPERATIONS SUMMARY:
Significant
Spacecraft Anomalies: (The following are preliminary reports
of
potential non-nominal performance that will be investigated.)
HSTARS:
(None)
COMPLETED
OPS REQUEST:
18917-0
- Set STIS Event Flags 2 and 3 to inhibit further MAMA ops @ 257/18:59z
COMPLETED
OPS NOTES: (None)
SCHEDULED SUCCESSFUL
FGS
GSAcq
9
9
FGS
REAcq
6
6
OBAD
with Maneuver 5
5
SIGNIFICANT
EVENTS:
Ops
Request 18917-0 at approximately 257/19:00 UTC,
set
the STIS event flags 2 and 3 in the NSSC-1 to
prevent
MAMA Low Voltage from being enabled.
OBSERVATIONS
SCHEDULED:
ACS/WFC
12209
A
Strong Lensing Measurement of the Evolution of Mass Structure in Giant
Elliptical
Galaxies
The
structure and evolution of giant elliptical galaxies provide key
quantitative
tests for the theory of hierarchical galaxy formation in a
cold
dark matter dominated universe. Strong gravitational lensing
provides
the only direct means for the measurement of individual
elliptical
galaxy masses beyond the local universe, but there are
currently
no large and homogeneous samples of strong lens galaxies at
significant
cosmological look-back time. Hence, an accurate and
unambiguous
measurement of the evolution of the mass-density structure
of
elliptical galaxies has until now been impossible. Using
spectroscopic
data from the recently initiated Baryon Oscillation
Spectroscopic
Survey (BOSS) of luminous elliptical galaxies at redshifts
from
approximately 0.4 to 0.7, we have identified a large sample of
high-probability
strong gravitational lens candidates at significant
cosmological
look-back time, based on the detection of emission-line
features
from more distant galaxies along the same lines of sight as the
target
ellipticals. We propose to observe 45 of these systems with the
ACS-WFC
in order to confirm the incidence of lensing and to measure the
masses
of the lens galaxies. We will complement these lensing mass
measurements
with stellar velocity dispersions from ground-based
follow-up
spectroscopy. In combination with similar data from the Sloan
Lens
ACS (SLACS) Survey at lower redshifts, we will directly measure the
cosmic
evolution of the ratio between lensing mass and dynamical mass,
to
reveal the structural explanation for the observed size evolution of
elliptical
galaxies (at high mass). We will also measure the evolution
of
the logarithmic mass-density profile of massive ellipticals, which is
sensitive
to the details of the merging histories through which they are
assembled.
Finally, we will use our lensing mass-to-light measurements
to
translate the BOSS galaxy luminosity function into a mass function,
and
determine its evolution in combination with data from the original
Sloan
Digital Sky Survey.
ACS/WFC
12210
SLACS
for the Masses: Extending Strong Lensing to Lower Masses and
Smaller
Radii
Strong
gravitational lensing provides the most accurate possible
measurement
of mass in the central regions of early-type galaxies
(ETGs).
We propose to continue the highly productive Sloan Lens ACS
(SLACS)
Survey for strong gravitational lens galaxies by observing a
substantial
fraction of 135 new ETG gravitational-lens candidates with
HST-ACS
WFC F814W Snapshot imaging. The proposed target sample has been
selected
from the seventh and final data release of the Sloan Digital
Sky
Survey, and is designed to complement the distribution of previously
confirmed
SLACS lenses in lens-galaxy mass and in the ratio of Einstein
radius
to optical half-light radius. The observations we propose will
lead
to a combined SLACS sample covering nearly two decades in mass,
with
dense mapping of enclosed mass as a function of radius out to the
half-light
radius and beyond. With this longer mass baseline, we will
extend
our lensing and dynamical analysis of the mass structure and
scaling
relations of ETGs to galaxies of significantly lower mass, and
directly
test for a transition in structural and dark-matter content
trends
at intermediate galaxy mass. The broader mass coverage will also
enable
us to make a direct connection to the structure of well-studied
nearby
ETGs as deduced from dynamical modeling of their line-of-sight
velocity
distribution fields. Finally, the combined sample will allow a
more
conclusive test of the current SLACS result that the intrinsic
scatter
in ETG
mass-density
structure is not significantly correlated with any other
galaxy
observables. The final SLACS sample at the conclusion of this
program
will comprise approximately 130 lenses with known foreground and
background
redshifts, and is likely to be the largest confirmed sample
of
strong-lens galaxies for many years to come.
COS/NUV/FUV
11741
Probing
Warm-Hot Intergalactic Gas at 0.5 < z < 1.3 with a Blind Survey
for
O VI, Ne VIII, Mg X, and Si XII Absorption Systems
Currently
we can only account for half of the baryons (or less) expected
to
be found in the nearby universe based on D/H and CMB observations.
This
"missing baryons problem" is one of the highest-priority challenges
in
observational extragalatic astronomy. Cosmological simulations
suggest
that the baryons are hidden in low-density, shock-heated
intergalactic
gas in the log T = 5 - 7 range, but intensive UV and X-ray
surveys
using O VI, O VII, and O VIII absorption lines have not yet
confirmed
this prediction. We propose to use COS to carry out a
sensitive
survey for Ne VIII and Mg X absorption in the spectra of nine
QSOs
at z(QSO) > 0.89. For the three highest-redshift QSOs, we will also
search
for Si XII. This survey will provide more robust constraints on
the
quantity of baryons in warm-hot intergalactic gas at 0.5 < z < 1.3,
and
the data will provide rich constraints on the metal enrichment,
physical
conditions, and nature of a wide variety of QSO absorbers in
addition
to the warm-hot systems. By comparing the results to other
surveys
at lower redshifts (with STIS, FUSE, and from the COS GTO
programs),
the project will also enable the first study of how these
absorbers
evolve with redshift at z < 1. By combining the program with
follow-up
galaxy redshift surveys, we will also push the study of
galaxy-absorber
relationships to higher redshifts, with an emphasis on
the
distribution of the WHIM with respect to the large-scale matter
distribution
of the universe.
FGS
12316
HST/FGS
Astrometric Search for Young Planets Around Beta Pic and AU Mic
AU
Mic is a nearby Vega-type debris disk stars. Its disk system has been
spatially
resolved in exquisite detail, predominantly via the ACS
coronagraph
and WFPC-2 cameras onboard HST. These images exhibit a
wealth
of morphological features which provide compelling indirect
evidence
that AU Mic likely harbors short-period planetary body(ies). We
propose
to use the superlative astrometric capabilities of HST/FGS to
directly
detect these planets, hence provide the first direct planet
detection
in a Vega-type system whose disk has been imaged at high
spatial
resolution.
S/C
12046
COS
FUV DCE Memory Dump
Whenever
the FUV detector high voltage is on, count rate and current
draw
information is collected, monitored, and saved to DCE memory. Every
10
msec the detector samples the currents from the HV power supplies
(HVIA,
HVIB) and the AUX power supply (AUXI). The last 1000 samples are
saved
in memory, along with a histogram of the number of occurrences of
each
current value.
In
the case of a HV transient (known as a "crackle" on FUSE), where one
of
these currents exceeds a preset threshold for a persistence time, the
HV
will shut down, and the DCE memory will be dumped and examined as
part
of the recovery procedure. However, if the current exceeds the
threshold
for less than the persistence time (a "mini-crackle" in FUSE
parlance),
there is no way to know without dumping DCE memory. By
dumping
and examining the histograms regularly, we will be able to
monitor
any changes in the rate of "mini-crackles" and thus learn
something
about the state of the detector.
STIS/CCD
11845
CCD
Dark Monitor Part 2
Monitor
the darks for the STIS CCD.
STIS/CCD
11847
CCD
Bias Monitor-Part 2
Monitor
the bias in the 1x1, 1x2, 2x1, and 2x2 bin settings at gain=1,
and
1x1 at gain = 4, to build up high-S/N superbiases and track the
evolution
of hot columns.
STIS/CCD
11999
JWST
Calibration from a Consistent Absolute Calibration of Spitzer &
Hubble
Recently,
Gordon, Bohlin, et al. submitted a successful Spitzer proposal
for
cross calibration of HST and Spitzer. The cross-calibration targets
are
stars in three categories: WDs, A-stars, and G-stars. Traditionally,
IR
flux standards are extrapolations of stellar models that are tied to
absolute
fluxes at shorter wavelengths. HST absolute flux standards are
among
the best available with a solid basis that uses pure hydrogen
models
of hot WD stars for the SED slopes and is tied to Vega at 5556A
via
precise Landolt V-band photometry. Consistently matching models to
our
three categories of HST observations along with Spitzer photometry
and
the few existing absolute IR flux determinations will provide a
solid
basis for JWST flux calibration over its 0.8-30micron range. The
goal
of this proposal is to complete the HST observations of the set of
HST/Spitzer
cross-calibration stars. Using a variety of standard stars
with
three different spectral types will ensure that the final
calibration
is not significantly affected by systematic uncertainties.
WFC3/ACS/IR
11563
Galaxies
at z~7-10 in the Reionization Epoch: Luminosity Functions to
<0.2L*
from Deep IR Imaging of the HUDF and HUDF05 Fields
The
first generations of galaxies were assembled around redshifts
z~7-10+,
just 500-800 Myr after recombination, in the heart of the
reionization
of the universe. We know very little about galaxies in this
period.
Despite great effort with HST and other telescopes, less than
~15
galaxies have been reliably detected so far at z>7, contrasting with
the
~1000 galaxies detected to date at z~6, just 200-400 Myr later, near
the
end of the reionization epoch. WFC3 IR can dramatically change this
situation,
enabling derivation of the galaxy luminosity function and its
shape
at z~7-8 to well below L*, measurement of the UV luminosity
density
at z~7-8 and z~8-9, and estimates of the contribution of
galaxies
to reionization at these epochs, as well as characterization of
their
properties (sizes, structure, colors). A quantitative leap in our
understanding
of early galaxies, and the timescales of their buildup,
requires
a total sample of ~100 galaxies at z~7-8 to ~29 AB mag. We can
achieve
this with 192 WFC3 IR orbits on three disjoint fields
(minimizing
cosmic variance): the HUDF and the two nearby deep fields of
the
HUDF05. Our program uses three WFC3 IR filters, and leverages over
600
orbits of existing ACS data, to identify, with low contamination, a
large
sample of over 100 objects at z~7-8, a very useful sample of ~23
at
z~8-9, and limits at z~10. By careful placement of the WFC3 IR and
parallel
ACS pointings, we also enhance the optical ACS imaging on the
HUDF
and a HUDF05 field. We stress (1) the need to go deep, which is
paramount
to define L*, the shape, and the slope alpha of the luminosity
function
(LF) at these high redshifts; and (2) the far superior
performance
of our strategy, compared with the use of strong lensing
clusters,
in detecting significant samples of faint z~7-8 galaxies to
derive
their luminosity function and UV ionizing flux. Our recent z~7.4
NICMOS
results show that wide-area IR surveys, even of GOODS-like depth,
simply
do not reach faint enough at z~7-9 to meet the LF and UV flux
objectives.
In the spirit of the HDF and the HUDF, we will waive any
proprietary
period, and will also deliver the reduced data to STScI. The
proposed
data will provide a Legacy resource of great value for a wide
range
of archival science investigations of galaxies at redshifts z~2-
9.
The data are likely to remain the deepest IR/optical images until
JWST
is launched, and will provide sources for spectroscopic follow up
by
JWST, ALMA and EVLA.
WFC3/IR/S/C
11929
IR
Dark Current Monitor
Analyses
of ground test data showed that dark current signals are more
reliably
removed from science data using darks taken with the same
exposure
sequences as the science data, than with a single dark current
image
scaled by desired exposure time. Therefore, dark current images
must
be collected using all sample sequences that will be used in
science
observations. These observations will be used to monitor changes
in
the dark current of the WFC3-IR channel on a day-to-day basis, and to
build
calibration dark current ramps for each of the sample sequences to
be
used by Gos in Cycle 17. For each sample sequence/array size
combination,
a median ramp will be created and delivered to the
calibration
database system (CDBS).
WFC3/UV
12324
The
Temperature Profiles of Quasar Accretion Disks
We
can now routinely measure the size of quasar accretion disks using
gravitational
microlensing of lensed quasars. At optical wavelengths we
observe
a size and scaling with black hole mass roughly consistent with
thin
disk theory but the sizes are larger than expected from the
observed
optical fluxes. One solution would be to use a flatter
temperature
profile, which we can study by measuring the wavelength
dependence
of the disk size over the largest possible wavelength
baseline.
Thus, to understand the size discrepancy and to probe closer
to
the inner edge of the disk we need to extend our measurements to UV
wavelengths,
and this can only be done with HST. For example, in the UV
we
should see significant changes in the optical/UV size ratio with
black
hole mass. We propose monitoring 5 lenses spanning a broad range
of
black hole masses with well-sampled ground based light curves,
optical
disk size measurements and known GALEX UV fluxes during Cycles
17
and 18 to expand from our current sample of two lenses. We would
obtain
5 observations of each target in each Cycle, similar to our
successful
strategy for the first two targets.
WFC3/UVIS
11905
WFC3
UVIS CCD Daily Monitor
The
behavior of the WFC3 UVIS CCD will be monitored daily with a set of
full-frame,
four-amp bias and dark frames. A smaller set of 2Kx4K
subarray
biases are acquired at less frequent intervals throughout the
cycle
to support subarray science observations. The internals from this
proposal,
along with those from the anneal procedure (Proposal 11909),
will
be used to generate the necessary superbias and superdark reference
files
for the calibration pipeline (CDBS).
WFC3/UVIS/IR
11702
Search
for Very High-z Galaxies with WFC3 Pure Parallel
WFC3
will provide an unprecedented probe to the early universe beyond
the
current redshift frontier. Here we propose a pure parallel program
using
this new instrument to search for Lyman-break galaxies at
6.5<z<8.8
and to probe the epoch of reionization, a hallmark event in
the
history of the early universe. We request 200 orbits, spreading over
30
~ 50 high Galactic latitude visits (|b|>20deg) that last for 4 orbits
and
longer, resulting a total survey area of about 140~230 square
arcminute.
Based on our understanding of the new HST parallel
observation
scheduling process, we believe that the total number of
long-duration
pure parallel visits in Cycle 17 should be sufficient to
accommodate
our program. We waive all proprietary rights to our data,
and
will also make the enhanced data products public in a timely manner.
(1)
We will use both the UVIS and the IR channels, and do not need to
seek
optical data from elsewhere.
(2)
Our program will likely triple the size of the probable candidate
samples
at z~7 and z~8, and will complement other targeted programs
aiming
at the similar redshift range.
(3)
Being a pure parallel program, our survey will only make very
limited
demand on the scarce HST resources. More importantly, as the
pure
parallel pointings will be at random sight-lines, our program will
be
least affected by the bias due to the large scale structure ("cosmic
variance").
(4)
We aim at the most luminous LBG population, and will address the
bright-end
of the luminosity function at z~8 and z~7. We will constrain
the
value of L* in particular, which is critical for understanding the
star
formation process and the stellar mass assembly history in the
first
few hundred million years of the universe.
(5)
The candidates from our survey, most of which will be the brightest
ones
that any surveys would be able to find, will have the best chance
to
be spectroscopically confirmed at the current 8--10m telescopes.
(6)
We will also find a large number of extremely red, old galaxies at
intermediate
redshifts, and the fine spatial resolution offered by the
WFC3
will enable us constrain their formation history based on the study
of
their morphology, and hence shed light on their connection to the
very
early galaxies in the universe.
Lynn F.
Bassford
office#: 301-286-2876
Hubble Space Telescope
CHAMP Mission Operations Manager
CHAMP Flight Operations Team Manager
Lockheed Martin Mission Services (LMMS)