Email distribution of the HST Daily Report will cease on ~10/15/10. The

Daily Report can now be found, and will continue to appear at:

http://www.stsci.edu/hst beneath the heading "HST Daily Report."

 

Reports for the prior "Zulu Day," 00:00:00 to 23:59:59 Universal Time,

will normally be posted by early afternoon, Eastern Time.

 

From the switchover date forward, Daily Reports will be issued 7 days a

week instead of M-F only.

 

HUBBLE SPACE TELESCOPE - Continuing to Collect World Class Science

 

DAILY REPORT #5196

 

PERIOD COVERED: 8:00pm October 4 - 7:59pm October 5, 2010 (DOY 278/00:00z-278/23:59z)

 

FLIGHT OPERATIONS SUMMARY:

 

Significant Spacecraft Anomalies: (The following are preliminary reports

of potential non-nominal performance that will be investigated.)

 

HSTARS:

12452 - GSAcq(1,2,1) at 278/14:55:23z Resulted in Fine Lock Back-up on FGS1.

 

           Observations possibly affected:  WFC3 1 Proposal ID#12344; WFC3 2-3

           Proposal ID#12345; STIS 1 Proposal ID#12212

 

 

HSTARS FOR DOY 263, 265, 266, AND 267

12453 - REAcq(2,1,1) at 263/18:48z required two attempts to achieve CT-DV.

 

           Observations possibly affected:  COS 23-28 Proposal ID#11997;

           COS 29 Proposal ID#11894

 

 

12454 - REAcq(1,2,1) at 265/13:58z required two attempts for FL-DV on FGS2.

 

           Observations possibly affected:  COS 64-66 Proposal ID#11598

 

 

12455 - REAcq(2,1,1) at 266/15:18z required two attempts to achieve CT-DV.

 

           Observations possibly affected:  WFC3 86-91 Proposal ID#12256

 

 

12456 - REAcq(1,2,1) at 267/21:54z required multiple attempts for CT-DV on FGS1.

 

           Observations possibly affected:  WFC3 116-117 Proposal ID#11591

 

 

COMPLETED OPS REQUEST: (None)

 

COMPLETED OPS NOTES: (None)

 

                       Scheduled   Successful

FGS GSAcq              10             10       

FGS REAcq              06             06       

OBAD with Maneuver 08            08       

 

SIGNIFICANT EVENTS: (None)

 

 

OBSERVATIONS SCHEDULED:

 

ACS/WFC 12210

 

SLACS for the Masses: Extending Strong Lensing to Lower Masses and

Smaller Radii

 

Strong gravitational lensing provides the most accurate possible

measurement of mass in the central regions of early-type galaxies

(ETGs). We propose to continue the highly productive Sloan Lens ACS

(SLACS) Survey for strong gravitational lens galaxies by observing a

substantial fraction of 135 new ETG gravitational-lens candidates with

HST-ACS WFC F814W Snapshot imaging. The proposed target sample has been

selected from the seventh and final data release of the Sloan Digital

Sky Survey, and is designed to complement the distribution of previously

confirmed SLACS lenses in lens-galaxy mass and in the ratio of Einstein

radius to optical half-light radius. The observations we propose will

lead to a combined SLACS sample covering nearly two decades in mass,

with dense mapping of enclosed mass as a function of radius out to the

half-light radius and beyond. With this longer mass baseline, we will

extend our lensing and dynamical analysis of the mass structure and

scaling relations of ETGs to galaxies of significantly lower mass, and

directly test for a transition in structural and dark-matter content

trends at intermediate galaxy mass. The broader mass coverage will also

enable us to make a direct connection to the structure of well-studied

nearby ETGs as deduced from dynamical modeling of their line-of-sight

velocity distribution fields. Finally, the combined sample will allow a

more conclusive test of the current SLACS result that the intrinsic

scatter in ETG mass-density structure is not significantly correlated

with any other galaxy observables. The final SLACS sample at the

conclusion of this program will comprise approximately 130 lenses with

known foreground and background redshifts, and is likely to be the

largest confirmed sample of strong-lens galaxies for many years to come.

 

COS/FUV 12212

 

What are the Locations and Kinematics of Mass Outflows in AGN?

 

Mass outflows of ionized gas in AGN, first revealed through blueshifted

UV and X-ray absorption lines, are likely important feedback mechanisms

for the enrichment of the IGM, self-regulation of black-hole growth, and

formation of structure in the early Universe. To understand the origin,

dynamics, and impact of the outflowing absorbers on their surroundings,

we need to know their locations (radial positions and polar angles with

respect to the AGN rotation axes) and kinematics (radial and transverse

velocities). We will use COS high-resolution spectra of 11 Seyfert 1

galaxies to derive velocity-dependent covering factors, ionic column

densities, number densities (via metastable lines or variability), and

ionization parameters (via photoionization models) of the UV absorbers,

and thereby determine their radial locations as we have done for NGC

4151. We will use absorption variability over time scales of up to ~20

years, to determine transverse velocities and detect changes in radial

velocities. We will use STIS G430M long-slit spectra and WFC3 [OIII]

images to resolve the kinematics of the narrow-line region (NLR) and

determine the inclinations of the AGN, to investigate the connection

between nuclear absorption and NLR emission outflows and their

dependence on polar angle.

 

COS/NUV/FUV/WFC3/UV 12248

 

How Dwarf Galaxies Got That Way: Mapping Multiphase Gaseous Halos and

Galactic Winds Below L*

 

One of the most vexing problems in galaxy formation concerns how gas

accretion and feedback influence the evolution of galaxies. In high mass

galaxies, numerical simulations predict the initial fuel is accreted

through 'cold' streams, after which AGN suppress star formation to leave

galaxies red and gas-poor. In the shallow potential wells that host

dwarf galaxies, gas accretion can be very efficient, and "superwinds"

driven either by hot gas expelled by SNe or momentum imparted by SNe and

hot-star radiation are regarded as the likely source(s) of feedback.

However, major doubts persist about the physics of gas accretion, and

particularly about SN-driven feedback, including their scalings with

halo mass and their influence on the evolution of the galaxies. While

"superwinds" are visible in X-rays near the point of their departure,

they generally drop below detectable surface-brightness limits at ~ 10

kpc. Cold clumps in winds can be detected as blue-shifted absorption

against the galaxy's own starlight, but the radial extent of these winds

are difficult to constrain, leaving their energy, momentum, and ultimate

fate uncertain. Wind prescriptions in hydrodynamical simulations are

uncertain and at present are constrained only by indirect observations,

e.g. by their influence on the stellar masses of galaxies and IGM

metallicity. All these doubts lead to one conclusion: we do not

understand gas accretion and feedback because we generally do not

observe the infall and winds directly, in the extended gaseous halos of

galaxies, when it is happening. To do this effectively, we must harness

the power of absorption-line spectroscopy to measure the density,

temperature, metallicity, and kinematics of small quantities of diffuse

gas in galaxy halos. The most important physical diagnostics lie in the

FUV, so this is uniquely a problem for HST and COS. We propose new COS

G130M and G160M observations of 41 QSOs that probe the gaseous halos of

44 SDSS dwarf galaxies well inside their virial radii. Using sensitive

absorption-line measurements of the multiphase gas diagnostics Lya,

CII/IV, Si II/III/IV, and other species, supplemented by optical data

from SDSS and Keck, we will map the halos of galaxies with L = 0.02 -

0.3 L*, stellar masses M* = 10^(8-10) Msun, over impact parameter from

15 - 150 kpc. These observations will directly constrain the content and

kinematics of accreting and outflowing material, provide a concrete

target for simulations to hit, and statistically test proposed galactic

superwind models. These observations will also inform the study of

galaxies at high z, where the shallow halo potentials that host dwarf

galaxies today were the norm. These observations are low-risk and

routine for COS, easily schedulable, and promise a major advance in our

understanding of how dwarf galaxies came to be.

 

WFC3/IR 12286

 

Hubble Infrared Pure Parallel Imaging Extragalactic Survey (HIPPIES)

 

WFC3 has demonstrated its unprecedented power in probing the early

universe. Here we propose to continue our pure parallel program with

this instrument to search for LBGs at z~6--8. Our program, dubbed as the

Hubble Infrared Pure Parallel Imaging Extragalactic Survey ("HIPPIES"),

will carry on the HST pure parallel legacy in the new decade. We request

205 orbits in Cycle-18, which will spread over ~ 50 high Galactic

latitude visits (|b|>20deg) that last for 3 orbits and longer, resulting

a total survey area of ~230 square arcmin. Combining the WFC3 pure

parallel observations in Cycle-17, HIPPIES will complement other

existing and forthcoming WFC3 surveys, and will make unique

contributions to the study in the new redshift frontier because of the

randomness of the survey fields. To make full use of the parallel

opportunities, HIPPIES will also take ACS parallels to study LBGs at

z~5--6. Being a pure parallel program, HIPPIES will only make very

limited demand on the scarce HST resources, but will have potentially

large scientific returns. As in previous cycle, we waive all proprietary

data rights, and will make the enhanced data products public in a timely

manner.

 

(1) The WFC3 part of HIPPIES aims at the most luminous LBG population at

z~8 and z~7. As its survey fields are random and completely

uncorrelated, the number counts of the bright LBGs from HIPPIES will be

least affected by the "cosmic variance", and hence we will be able to

obtain the best constraint on the bright-end of the LBG luminosity

function at z~8 and 7. Comparing the result from HIPPIES to the

hydrodynamic simulations will test the input physics and provide insight

into the nature of the early galaxies. (2) The z~7--8 candidates from

HIPPIES, most of which will be the brightest ones that any surveys would

be able to find, will have the best chance to be spectroscopically

confirmed at the current 8--10m telescopes. (3) The ACS part of HIPPIES

will produce a significant number of candidate LBGs at z~5 and z~6 per

ACS field. Combining with the existing, suitable ACS fields in the HST

archive, we will be able to utilize the random nature of the survey to

quantify

 

the cosmic variance and to measure the galaxy bias at z~5--6, and

therefore the galaxy halo masses at these redshifts. (4) We will also

find a large number of extremely red, old galaxies at intermediate

redshifts, and the fine spatial resolution offered by the WFC3 will

enable us constrain their formation history based on the study of their

morphology, and hence shed light on their connection to the very early

galaxies in the universe.

 

WFC3/UV 12215

 

Searching for the Missing Low-Mass Companions of Massive Stars

 

Recent results on binary companions of massive O stars appear to

indicate that the distribution of secondary masses is truncated at low

masses. It thus mimics the distribution of companions of G dwarfs and

also the Initial Mass Function (IMF), except that it is shifted upward

by a factor of 20 in mass. These results, if correct, provide a

distribution of mass ratios that hints at a strong constraint on the

star-formation process. However, this intriguing result is derived from

a complex simulation of data which suffer from observational

incompleteness at the low-mass end.

 

We propose a snapshot survey to test this result in a very direct way.

HST WFC3 images of a sample of the nearest Cepheids (which were formerly

B stars of ~5 Msun) will search for low-mass companions down to M

dwarfs. We will confirm any companions as young stars, and thus true

physical companions, through follow-up Chandra X-ray images. Our survey

will show clearly whether the companion mass distribution is truncated

at low masses, but at a mass much higher than that of the IMF or G

dwarfs.

 

WFC3/UV 12344

 

Cycle 18: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie-shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly-exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.

 

WFC3/UV 12345

 

UVIS Long Darks Test

 

Darks during SMOV showed a systematically lower global dark rate as well

as lower scatter when compared to the Cycle 17 darks. Those two sets of

exposures differ in exposure time - 1800 sec during SMOV and 900 sec

during Cycle 17. Hypothetically, the effect could be caused by

short-duration stray light, say ~500-sec in duration. During the latter

part of Cycle 17, operation of WFC3 was changed to additionally block

the light path to the detector with the CSM. This program acquires a

small number of darks at the longer SMOV exposure times (1800 sec) in

order to check whether the effect repeats in the new operating mode.

 

WFC3/UVIS 11908

 

Cycle 17: UVIS Bowtie Monitor

 

Ground testing revealed an intermittent hysteresis type effect in the

UVIS detector (both CCDs) at the level of ~1%, lasting hours to days.

Initially found via an unexpected bowtie- shaped feature in flatfield

ratios, subsequent lab tests on similar e2v devices have since shown

that it is also present as simply an overall offset across the entire

CCD, i.e., a QE offset without any discernable pattern. These lab tests

have further revealed that overexposing the detector to count levels

several times full well fills the traps and effectively neutralizes the

bowtie. Each visit in this proposal acquires a set of three 3x3 binned

internal flatfields: the first unsaturated image will be used to detect

any bowtie, the second, highly exposed image will neutralize the bowtie

if it is present, and the final image will allow for verification that

the bowtie is gone.